Re45:读论文 GPT-1 Improving Language Understanding by Generative Pre-Training

这篇文章介绍了2018年OpenAI的GPT-1研究,通过无监督预训练语言模型解决有监督数据稀缺的问题,探讨了Transformer的优势以及在NLI、QA、语义相似度和文本分类任务中的实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文全名:Improving Language Understanding by Generative Pre-Training
论文下载地址:https://www.mikecaptain.com/resources/pdf/GPT-1.pdf

官方博文:Improving language understanding with unsupervised learning

本文是2018年OpenAI的工作,是初代GPT的原始论文。

先用无监督数据预训练语言模型(Transformer decoder),再在有监督数据上微调(加一层prediction head,同时优化语言模型和有监督任务的损失函数)
在这里插入图片描述

1. 简介

NLU任务包括textual entailment, question answering, semantic similarity assessment, and document classification等子任务,本文测试了NLI、QA、语义相似度和文本分类4个任务。
有监督数据稀少,本文的解决方案是在语言模型上用海量无标签数据上进行generative pre-training,然后再在特定子任务上discriminative fine-tuning。
(算半监督学习)

普遍的使用无监督方法来学习语言学知识的方法,是构建预训练词嵌入来提升NLP任务的效果,这种做法有两个问题:1. 在学习文本表征中使用什么优化目标对迁移最有效,不知道。至今没有绝对优秀的方法。2. 如何利用文本表征最有效,不知道。

2. GPT-1

1. 无监督预训练语言模型

标准语言模型目标,最大化文本的似然:
在这里插入图片描述

k k k是上下文窗口尺寸,条件概率 P P P,神经网络的参数 Θ \Theta Θ

本文用多层Transofmer decoder1(多头自注意力机制+position-wise前馈神经网络生成target token上的输出分布):
在这里插入图片描述
U U U是token, n n n是层数, W e W_e We是token嵌入矩阵, W p W_p Wp是position embedding矩阵

Transformer相比LSTM的优势体验在对长文本的处理上

2. 微调

通过输入(每个任务被转变成不同形式的输入,见figure 1)得到表征,喂进线性输出层来预测 y y y
在这里插入图片描述

新的优化目标:
在这里插入图片描述

事实上是将两个优化目标加起来:
在这里插入图片描述

3. 实验

1. 数据集

  1. 上游预训练数据:BooksCorpus和1B Word Benchmark
  2. 下游微调数据
    在这里插入图片描述

2. 下游任务指标

  1. NLI任务的实验结果在这里插入图片描述
  2. QA和常识推理的实验结果在这里插入图片描述
  3. 语义相似度和文本分类的实验结果在这里插入图片描述

3. 模型分析

  1. 层数对微调结果的影响(答案是越多越好)和预训练更新次数对zero-shot表现的影响在这里插入图片描述
    (数值是经规范化后得到的)
  2. ablation study
    在这里插入图片描述

  1. Generating Wikipedia by Summarizing Long Sequences ↩︎

### 关于《通过生成式预训练提升语言理解》论文的中文翻译 #### 1. 论文背景介绍 本研究旨在探索如何利用大量的未标注数据来改进自然语言处理系统的性能。具体来说,这项工作展示了通过对大规模语料库进行无监督学习,可以显著提高多种下游NLP任务的表现。这种方法被称为“生成式预训练”,它允许模型在接触特定任务之前先获得广泛的语言知识[^1]。 #### 2. GPT 的定义及其工作机制 GPT 是指 "Generative Pre-trained Transformer"[^2],这是一种基于Transformer架构设计的语言模型。该模型能够根据给定的历史文本片段预测后续可能出现的内容,进而实现新文本的创建。这种能力源于其强大的统计特性,使得GPT可以从已有的输入模式中推断出合理的延续方式[^2]。 #### 3. 预训练的具体方法 为了使模型更好地捕捉到语言中的长期依赖关系,在最初的实验设置里选择了类似于成语接龙的任务作为主要的预训练目标之一。此过程中,系统会尝试依据前k个词语推测第k+1个词的身份;这里的k代表了一个固定的上下文长度窗口大小。通过最小化预测错误率的方式调整网络权重,以此完成整个训练流程[^3]。 #### 4. 模型结构细节 文中描述了一种由十二层解码器组成的独占版Transformers架构,每层包含了768维的状态向量以及十二组注意力机制单元。值得注意的是,这里采用了掩蔽技术以防止未来信息泄露至当前时间步长内的计算当中,确保了因果一致性[^4]。 ```python class DecoderOnlyTransformer(nn.Module): def __init__(self, vocab_size=50257, n_embd=768, n_head=12, n_layer=12): super().__init__() self.transformer = nn.TransformerDecoder( decoder_layer=nn.TransformerDecoderLayer(d_model=n_embd, nhead=n_head), num_layers=n_layer, norm=None ) def forward(self, src, tgt, mask=None): output = self.transformer(tgt=tgt, memory=src, tgt_mask=mask) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值