Re60:读论文 FILM Adaptable and Interpretable Neural Memory Over Symbolic Knowledge

这篇2021年NAACL的谷歌论文探讨了适应性和可解释性的神经记忆模型FILM,用于解决语言模型中信息更新的问题。论文提出了一种知识库结构,通过三向量组表示实体和关系,以提高模型的解释性。作者认为模型虽然复杂但缺乏新颖技巧,且谷歌论文通常难以理解,因此未深入研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:Adaptable and Interpretable Neural Memory Over Symbolic Knowledge
模型名称:Fact Injected Language Model (FILM)

NAACL版网址:https://aclanthology.org/2021.naacl-main.288/

本文是2021年NAACL论文,作者来自谷歌。

这篇论文解决的也是LM中信息更新难(需要改数据重新训练)的问题,提出了可解释的神经符号知识库fact memory,每个元素来自一个三向量组(每个向量对应一个知识库实体或关系)。
entity memory
FILM:masked LM

总之就是这种堆叠的模型……
在这里插入图片描述

这篇论文看起来太堆叠了,没什么值得我现在研究的trick,而且是谷歌论文(谷歌的论文普遍晦涩难懂),所以没有仔细看。

实验

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这个是考虑到训练集使用数据的问题:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值