torchvision库在进行图片转换操作中报antialias参数没有显式设置会导致不同图片后端中的值不统一的警告信息

诸神缄默不语-个人CSDN博文目录

这个警告信息是我在直接调用已经封装好的视觉模型时出现的,位置是:
D:\anaconda3\envs\venv_path\Lib\site-packages\torchvision\transforms\functional.py:1603

警告信息全文是:
UserWarning: The default value of the antialias parameter of all the resizing transforms (Resize(), RandomResizedCrop(), etc.) will change from None to True in v0.17, in order to be consistent across the PIL and Tensor backends. To suppress this warning, directly pass antialias=True (recommended, future default), antialias=None (current default, which means False for Tensors and True for PIL), or antialias=False (only works on Tensors - PIL will still use antialiasing). This also applies if you are using the inference transforms from the models weights: update the call to weights.transforms(antialias=True).

这个警告信息是因为在即将发布的v0.17版本中,torchvision库计划更改所有调整大小变换(如Resize()RandomResizedCrop()等)的antialias参数的默认值。在当前版本中,antialias参数的默认值为None,这意味着对于张量(Tensor)后端,它将被解释为False,而对于PIL(Python Imaging Library)后端,它将被解释为True。为了在未来的版本中保持一致性,torchvision计划将默认值更改为True

即使我没有直接在我的代码中使用antialias参数,只要我使用了torchvision库中的调整大小变换,这个警告信息也会出现,因为这些变换函数内部使用了antialias参数。

要消除这个警告,有几个选项:

  1. 推荐的方法:直接在你的变换函数调用中传递antialias=True。这是推荐的做法,因为它符合未来的默认行为。
transform = torchvision.transforms.Resize(size=(256, 256), antialias=True)
  1. 保持当前行为:如果你想保持当前的行为(即对于张量使用False,对于PIL使用True),你可以传递antialias=None
transform = torchvision.transforms.Resize(size=(256, 256), antialias=None)
  1. 禁用抗锯齿:如果你确定你想在张量后端禁用抗锯齿,你可以传递antialias=False。但请注意,这不会影响PIL后端,它仍然会使用抗锯齿。
transform = torchvision.transforms.Resize(size=(256, 256), antialias=False)

选择哪种方法取决于你的具体需求和你希望如何处理未来的默认值更改。如果你想确保代码在未来版本的torchvision中继续正常工作,推荐使用第一种方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值