自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学习,输出==》再学习再输出

主要关注AI领域的大模型企业落地,AI辅助编程教育普及等内容,致力于AI创新和应用,推动AI赋能企业数字化转型

  • 博客(430)
  • 资源 (16)
  • 收藏
  • 关注

原创 一文读懂“人工智能”、“机器学习”、“深度学习”这些词的真正含义和关系台

你是不是也经常听到“人工智能”、“机器学习”、“深度学习”这些词,然后感觉它们像是某种高深莫测的“高科技魔法”?别担心,不止是你一个人。但今天,我们就来揭开这些概念的神秘面纱,让你一下子明白人工智能到底是什么,以及它和我们常听说的那些词之间,究竟有什么关系。人工智能 (AI):让机器“思考”的总目标想象...

2025-07-12 09:53:31 152

原创 基于YOLOv3-Tiny 的智能门铃的人体检测模型的实现(上)

我们将定义 YOLOv3-Tiny 的骨干网络和头部。# model.py"""YOLOv3-Tiny 的实现主要模块:1. ConvBlock: 卷积层 + BatchNorm + LeakyReLU2. YOLOLayer: YOLO检测头,处理输出特征图并生成边界框预测"""return xself.ignore_thres = 0.5 # IoU阈值,低于此值的预测不计入损失self.obj_scale = 1 # 目标置信度损失权重。

2025-07-12 09:36:19 559

原创 【分享】交互式 AI 模型方案选择器,轻松获得推荐AI方案

一文中的为了更好地将这些理论转化为实用工具,报告提到了一个“AI 模型方案选择器”,通过回答问题,可以为用户推荐最适合的 AI 解决方案。根据用户的的回答,帮助用户给出推荐方案及备选方案,还有多方案之间的比较,供用户选择权衡。

2025-07-11 09:07:32 196

原创 分享:MarkDown电子书在线阅读器构建中的问题和解决

和上次发布,又多了几本电子书。下面重要分享过程中遇到的问题和解决方案。

2025-07-11 08:43:00 827

原创 【报告发布】小模型与边缘AI的高效构建 从理论探讨逐步深入到具体的应用开发

首先从“如何构建一个满足要求的小模型”开始,探讨了在大型语言模型(LLMs)成熟的背景下,小模型的定义、数据准备、架构选择(如传统机器学习、小型神经网络、知识蒸馏、量化、剪枝)以及训练评估等关键步骤。接着探讨了“如何利用大语言模型解决传统机器学习和神经网络的问题”,提出了 LLMs 在数据增强、特征工程、模型选择辅助、提升可解释性以及小样本/零样本学习方面的应用潜力,并通过“客户评论情感分析”的具体应用举例,详细展示了 LLMs 如何通过生成语义嵌入和知识驱动的特征来解决传统特征工程的痛点。

2025-07-10 11:54:45 169

原创 【干货】Agent实战开发 提示词优化Agent

开发一个提示词优化Agent是非常具有挑战性但又充满潜力的任务。通过利用先进的生成式模型、优化算法和用户反馈机制,这个Agent将能极大提高大模型在各种任务中的表现,帮助开发者更高效地生成高质量的输出。如果你有兴趣继续深入某个部分的实现或有具体的问题,随时可以告诉我!

2025-07-10 11:30:43 649

原创 【大模型解决传统特征工程问题】客户评论的情感分析模型

将复杂的文本特征提取(如 TF-IDF、n-gram、情感词典)替换为简单的 LLM 嵌入生成,大大减少了人工工作量。LLM 嵌入能理解词语的上下文和语义关联,处理同义词、多义词和复杂句式,这是传统方法难以做到的。更高质量的语义特征使得即使是简单的机器学习模型也能达到更好的分类性能。新词、流行语等会自然地被 LLM 捕捉到其语义,无需频繁更新词典或规则。LLM 可以帮助我们将抽象的特征解释为人类可理解的语言,增强模型透明度。

2025-07-09 09:19:20 921

原创 【边缘AI】如何构建智能门铃的人体检测模型

这些都是在资源受限环境中实现 AI 功能的关键。

2025-07-09 09:16:23 1006

原创 AI辅助编程及大模型应用开发实战电子书已集结完毕

无论是普通人感兴趣的AI辅助编程,还是程序员目前的大模型应用实战,这里都有满足你的信息。AI席卷而来,驾驭AI,用好AI,让AI助力你起飞。电子书获取,请直接发私信给我。

2025-07-04 14:22:55 305

原创 6月份最后一天,终于在月底前完成了本月的计划,更新完大模型应用开发全系列及 Deepseek相关内容

1.大模型应用实战含微调、提示工程,API集成、部署优化等,结合行业案例解析技术落地场景。2.RAG实战围绕具体案例,覆盖从商业目标分析到后期运维运营的全生命周期实践。3.Agent 应用实战以电商客服场景为例,构建可自主处理咨询、查询订单、协助退换货及推荐商品的智能电商客服多Agent系统。融入了丰富的代码片段、详细的配置示例与命令实录,确保读者能够边学边练,即学即用。通过金融、医疗、政务、教育等多个行业的真实落地案例,让读者深刻理解 DeepSeek 大模型在不同业务场景下的巨大潜力与实际应用。

2025-07-01 07:59:21 274

原创 《大模型 Agent 应用实战指南》第13章:Agent 的未来趋势与伦理考量

Agent 的未来将走向。

2025-06-30 09:05:38 288 6

原创 《大模型 Agent 应用实战指南》第12章:Agent 运营与持续优化

数据闭环与反馈是 Agent 持续优化的生命线。通过。

2025-06-30 09:05:16 26

原创 《大模型 Agent 应用实战指南》第11章:Agent 持续监控与运维

实时监控是 Agent 系统运维的基石,它不仅覆盖传统的系统健康和 API 性能,更深入到 Agent 独特的 LLM 调用、Token 费用和用户交互等层面。通过全面监控。

2025-06-30 09:04:56 29

原创 《大模型 Agent 应用实战指南》第10章:Agent 应用部署与扩容

Agent 应用的部署是其走向生产的关键。

2025-06-30 09:03:53 36

原创 《大模型 Agent 应用实战指南》 第9章:Agent 结果可信性验证与幻觉规避

证据链回溯是构建可信赖、可解释 Agent 系统的基石。通过系统地记录 Agent 的。

2025-06-30 09:03:25 777

原创 《大模型 Agent 应用实战指南》第8章:Agent 测试策略与评估

单元测试是对软件中最小可测试单元(如函数、方法、类)进行的独立测试,旨在验证其功能是否按预期工作。在 Agent 语境下,这些“单元”通常是 Agent 内部的各个组件。

2025-06-30 09:03:02 27

原创 《大模型 Agent 应用实战指南》第7章:多 Agent 协作与复杂流程

多 Agent 架构通过将复杂问题分解给专业的子 Agent 来处理,极大地增强了 Agent 系统的。

2025-06-30 09:02:40 109

原创 《大模型 Agent 应用实战指南》第6章:知识库构建与 RAG 增强

结构化数据是指那些以预定义格式组织的数据,它们通常存储在关系型数据库、电子表格或特定的数据结构中,具有明确的行、列、表等Schema。这种数据易于查询、排序和分析。

2025-06-27 08:41:12 1038

原创 《大模型 Agent 应用实战指南》第5章:(Tools)工具集成与管理

大模型 Agent 的强大之处,在于它不仅仅能“说”和“思考”,还能**“做”。这种“做”的能力,就是通过工具(Tools)**来实现的。工具是 Agent 与外部世界交互的接口,它把 Agent 的智能决策转化为实际行动,比如查询数据库、发送邮件、调用第三方服务等。要让 Agent 能够使用这些工具,我们首先需要对现有系统中的各种功能进行定义和封装。这就像给 Agent 准备一个工具箱,每个工具都有明确的名称、功能和使用说明。在 Agent 的语境中,一个“工具”通常是一个特定功能的封装。

2025-06-27 08:40:43 694

原创 《大模型 Agent 应用实战指南》第4章:核心 Agent 设计与提示工程

定义:思维链 (CoT) 是指在给 LLM 的提示词中,通过提供包含中间推理步骤的示例或明确要求 LLM 逐步思考的指令,来促使 LLM 生成一个逻辑清晰、环环相扣的推理过程,最终得出结论或执行行动。目的:解决 LLM 在处理复杂问题时可能出现的“跳步”或逻辑混乱问题,提升其推理的准确性和鲁棒性。它让 LLM 不仅知道“是什么”,更知道“为什么”和“如何做”。对比:传统 Prompt:直接给出问题,期望 LLM 直接给出答案。用户:“我的订单ABC123能退货吗?

2025-06-26 17:11:25 125

原创 《大模型 Agent 应用实战指南》 第3章:基础架构与技术选型

构建一个大模型 Agent 系统,离不开一系列核心技术组件的支撑。这些组件共同构成了 Agent 的“骨架”和“大脑”,使其能够理解、推理、行动。在规划初期,选择合适的基础技术栈至关重要,它将直接影响系统的性能、成本、可扩展性和开发效率。

2025-06-26 17:09:29 29

原创 RAG实战 附录常用工具与库清单,常见问题

本附录旨在为读者提供额外资源,帮助读者将理论知识转化为实际应用。我们将列出 RAG 系统开发中常用的工具与库,提供实用的案例代码仓库地址,并解答在 RAG 开发和部署过程中可能遇到的常见问题。

2025-06-26 08:29:54 33

原创 增刊第5章:模型性能优化

定义:量化是将模型的权重和/或激活值从高精度浮点数(如FP32或FP16)转换为低精度表示(如INT8或INT4)的过程。目的:减少模型大小:例如,将FP16(2字节/参数)量化为INT4(0.5字节/参数),模型大小可缩小4倍。这有助于将更大的模型加载到有限的显存中。加速推理:低精度计算(尤其是整数运算)通常比浮点运算更快,且消耗的算力资源更少。现代GPU和AI加速器普遍对INT8/INT4计算有硬件优化(如NVIDIA的Tensor Cores)。降低内存带宽需求。

2025-06-26 06:45:47 112

原创 RAG实战 第七章:RAG 的前沿与未来展望

本章将对 RAG 技术进行总结,并展望其未来的发展方向。我们将探讨 RAG 如何与其他 AI 技术融合,以及在更复杂的应用场景中如何演进。同时,本章还将重点讨论 RAG 应用中不可忽视的伦理、隐私和安全挑战,并提出相应的风险管理策略,确保 RAG 技术的健康和负责任发展。

2025-06-26 06:41:50 27

原创 《大模型 Agent 应用实战指南》第2章:商业目标与 Agent 能力边界定义

在规划智能客服 Agent 时,核心在于。

2025-06-25 23:11:22 61

原创 《大模型 Agent 应用实战指南》第1章:Agent 范式概览与商业机遇

在理解了传统 LLM 应用范式的局限之后,我们现在可以深入探讨大模型 Agent (Large Language Model Agent)这一开创性的概念。简单来说,一个大模型 Agent 不仅仅是一个文本生成器,它被赋予了自主思考、规划、执行和反思的能力,使其能够像人类一样,将一个高层次的目标分解为可执行的步骤,并利用外部工具来完成这些步骤。你可以将 Agent 想象成一个拥有了“大脑”(LLM)和“手脚”(工具)的智能实体,它能够理解复杂的指令,并采取一系列行动来实现目标,而不仅仅是给出答案。

2025-06-25 23:09:50 35

原创 大模型应用开发实战,来CSDN看这两个专栏就够了。[特殊字符]

另外近期会增加《大模型 Agent 应用实战指南》专题,专题将以一个典型的电商客服场景为例:构建一个能够自主处理用户咨询、查询订单状态、协助退换货流程、甚至能为用户推荐商品的智能电商客服 Agent 系统。这个 Agent 不仅仅是问答,它需要调用内部 API(订单系统、库存系统、商品推荐系统)、与用户多轮交互,并在必要时将复杂问题流转给人工客服。针对粉丝的RAG系列文章,也将归入专栏。

2025-06-25 22:36:17 401

原创 【预告 大模型应用开发实战专栏 升级】将增加《大模型 Agent 应用实战指南》专题赋能 Agent 开发者

我们将以一个典型的电商客服场景为例:构建一个能够自主处理用户咨询、查询订单状态、协助退换货流程、甚至能为用户推荐商品的智能电商客服 Agent 系统。这个 Agent 不仅仅是问答,它需要调用内部 API(订单系统、库存系统、商品推荐系统)、与用户多轮交互,并在必要时将复杂问题流转给人工客服。

2025-06-25 22:18:56 853

原创 增刊第4章:成本控制与效率提升

在DeepSeek大模型私有化部署中,除了追求极致的性能,和同样是企业关注的重点。本章将探讨一系列策略,帮助您在满足业务需求的同时,有效降低硬件投入和运营开销。在实际场景中,尤其是对于中小型DeepSeek模型或低负载应用,单一GPU的算力可能无法完全被一个模型实例利用。通过实现GPU资源共享,可以显著提升硬件利用率。

2025-06-25 21:16:06 520

原创 RAG实战 第六章:RAG 系统部署、监控与持续优化

将 RAG 应用从开发环境迁移到生产环境,并确保其长期稳定、高效、可靠地运行,是构建成功智能客服助手的最后也是最重要的一步。本章将引导读者完成 RAG 系统的部署,并详细讲解如何对其进行有效的监控、日志管理以及基于性能反馈进行持续优化的策略。

2025-06-25 08:02:49 361

原创 RAG实战 第五章:RAG 中的 LLM 生成与提示工程

本章将深入探讨 RAG 系统的另一个核心支柱——。我们将学习如何利用提示工程(Prompt Engineering)这一强大技术,引导 LLM 结合检索到的上下文信息,生成高质量、准确且符合需求的答案。本章还将涵盖优化生成效果的策略,以及如何处理 LLM 可能出现的幻觉问题。

2025-06-25 08:02:00 489

原创 增刊第3章:硬件规划与资源评估

私有化部署 DeepSeek 大模型是一项涉及硬件基础设施的系统工程。在动手部署之前,进行详细的硬件规划和资源评估至关重要。这不仅能帮助企业预估成本、优化性能,还能避免资源浪费和后期扩展难题。本章将深入探讨 GPU 集群的选型策略、内存、存储与网络配置建议,并介绍如何构建成本估算模型。

2025-06-24 23:04:22 450

原创 增刊第2章:模型API封装与安全

您已经成功部署并优化了DeepSeek大模型,现在是时候将其能力暴露给上层应用了。本章将指导您如何为DeepSeek模型构建一个稳定、安全且易于使用的API接口,并探讨API安全、鉴权、限流和日志记录的关键实践。RESTful API是目前最流行、最易于理解和使用的API设计风格。我们将围绕DeepSeek大模型的核心功能——文本生成和对话,来设计API接口。

2025-06-24 23:03:35 518

原创 RAG实战 第四章:RAG 检索增强技术与优化

本章将深入探讨 RAG 系统的核心——。我们将从最基础的相似度搜索开始,逐步讲解如何通过各种高级检索策略和优化技巧,确保 RAG 系统能够从海量知识库中精准、高效地找到最相关的上下文信息,从而显著提升生成答案的准确性和质量。

2025-06-24 23:01:48 657

原创 RAG实战 第三章:知识库构建与管理

本章将详细阐述 RAG 系统中最核心的“知识”部分——。我们将深入探讨从多样化的企业数据源中提取信息,经过清洗、切分、嵌入等处理,最终高效地存储于向量数据库,并实现后续更新与维护的全流程。高质量的知识库是 RAG 系统准确性和可靠性的基石。

2025-06-24 23:01:08 469

原创 RAG 应用实战指南:从商业目标到系统落地与运营 E2E 实践

在当今信息爆炸的时代,如何高效地从海量数据中提取有用信息并提供智能问答服务,成为众多企业关注的焦点。检索增强生成(Retrieval-Augmented Generation, RAG)技术以其结合了检索模型的精准性和生成模型的灵活性,为解决这一难题提供了强大的解决方案。本实战指南将围绕一个具体的案例,详细阐述 RAG 应用从商业目标分析、技术选型、系统设计、开发实现、测试部署,直至后期运维和运营的全生命周期实践。

2025-06-24 10:46:59 839

原创 RAG 实战 第二章:技术选型与架构设计

检索增强生成(RAG)系统之所以强大,在于它巧妙地结合了信息检索的精准性与大型语言模型(LLM)的生成能力。检索模块生成模块以及将两者有机结合并优化的编排与优化模块。

2025-06-24 10:45:01 608

原创 RAG实战 第一章:商业目标与需求分析

本章将深入探讨检索增强生成(RAG)应用的,并针对进行详细的需求分析。我们将从宏观视角审视 RAG 如何解决传统问答系统的痛点,延伸至其在各行各业的广阔应用前景,最后聚焦于我们实战案例的具体需求,并确立衡量成功的关键指标。

2025-06-24 10:44:20 267

原创 第18章:附录

本附录旨在为读者提供一份DeepSeek大模型私有化部署的速查指南和延伸学习资源。我们将导读DeepSeek的官方文档,整理部署与应用过程中常用到的开源工具清单,并提供一个核心术语表和相关资源链接,帮助读者巩固知识,并进一步探索。

2025-06-24 06:55:33 35

原创 第17章:未来趋势

DeepSeek 大模型私有化部署不仅仅是当前的技术实践,它更是企业在 AI 时代保持竞争力的战略布局。随着人工智能技术的飞速发展,大模型的能力边界将不断拓宽,并与更前沿的技术深度融合。本章将探讨 DeepSeek 私有化部署在未来可能的发展方向,包括多模态能力的扩展、Agent 与企业自动化的结合,以及联邦学习与隐私计算的融合,预见这些趋势如何赋能企业,开启更广阔的应用前景。

2025-06-24 06:53:49 20

一键快捷图片批量去除水印

一键快捷图片批量去除水印,免去逐个操作的烦恼

2025-07-05

一键批量图片裁剪处理!

日常的运营运营中,对于不符合尺寸要求的图片,一键批量进行裁剪

2025-07-05

Excel【办公软件应用】Excel 2016快速入门指南:基础功能介绍与高效办公技巧汇总了文档的主要内容

内容概要:本文档是针对Excel 2016的快速入门指南,旨在帮助新用户掌握Excel的基础操作。文档介绍了Excel 2016的基本界面和功能,包括浏览功能区、使用快速访问工具栏、探索上下文命令、与他人共享工作簿、查找最近文件、保持跨设备连接、创建和自定义内容(如表格、图表)、插入函数和构建公式、管理数据、获取帮助和支持、探索新增功能等。它还引导用户进一步了解Office 2016套件的其他组件,并鼓励用户提供反馈以改进产品。

2025-07-05

员工卡照片一键生成器~

员工卡照片生成器,可以生成不同背景和尺寸的员工卡照片

2025-07-05

绿色chrome 截屏插件

绿色chrome 截屏插件代码,可以直接安装使用。

2025-07-04

提示词随手记chrome插件

提示词随手记chrome插件代码,可以直接安装到chrome使用。

2025-07-04

大模型实战系列-08 开发一个基于 MCP 协议的多 Agent 协作系统

一个基于 MCP 协议的多 Agent 协作系统。这个系统将能够接收用户问题,并协调多个 Agent 协作完成任务,例如研究、撰写、审核和润色。我们还将实现失败重试、gRPC 通信和任务队列持久化。

2025-07-03

鸿蒙分析报告,大模型 也许成为鸿蒙跨越应用“鸿沟”的契机

1.鸿蒙手机现状 2.鸿蒙系统开放生态的现状、挑战与未来发展路径 3.鸿蒙最可能的出路不是手机而是车载 4.大模型 也许成为鸿蒙跨越应用“鸿沟”的契机

2025-04-12

只需 10 个步骤,即可熟练使用 Excel - 全球极受欢迎的电子表格应用

只需 10 个步骤,即可熟练使用 Excel - 全球极受欢迎的电子表格应用

2024-11-07

Excel数据分析与模拟决策配套练习

Excel数据分析与模拟决策配套练习

2024-11-01

Excel模拟运算实操

Excel模拟运算实操

2024-11-01

数据中台之数据架构参考

数据中台作为企业数字化转型的抓手。从企业架构出发,数据架构可作为数据中台建设的理论参考。从而深入理解数据中台与企业业务价值的关联。

2020-09-15

​ 这份报告对 YC 2023 年和 2024 年队列中的 417 家人工智能公司进行了广泛的分析

​ 这份报告对 YC 2023 年和 2024 年队列中的 417 家人工智能公司进行了广泛的分析。对于那些不知道的人来说,YCombinator是一个领先的初创企业加速器,提供种子资金、指导和资源,以帮助早期初创企业取得成功,YCombinator (YC)在发现和培育成功初创企业方面的业绩在科技行业中无与伦比。他们的选择过程不断发现那些后来重塑整个行业的公司,这使得他们的投资组合成为新兴趋势和技术的宝贵指标 ​

2024-08-17

Evidently AI - 内部机器学习平台的终极清单

Evidently AI - 内部机器学习平台的终极清单

2024-08-14

python numpy速成手册

python

2024-08-14

nestc中文手册

nest c

2014-09-14

智能家居浅析

智能家居浅析

2015-09-22

世界各地很多服务提供商采纳了TM论坛的TOM2.1业务架构模式,TOM已经成为服务提供商运营管理的工业标准。但是。。。。

前,世界各地很多服务提供商采纳了TM论坛的TOM2.1业务架构模式,TOM已经成为服务提供商运营管理的工业标准。但是,TOM存在两点不足之处:TOM只包含了运营管理过程,而没有覆盖整个企业的业务过程;TOM没有充分考虑到电子商务和Internet对业务环境的影响以及运营商业务关系的越来越复杂性。针对于此,ETOM以TOM为核心,对这两方面进行了扩展。

2022-02-11

华为数字化运营.pdf

华为的数字化运营实践。数字化转型的基础,是业务的全面数字化。大数据技术只是一个加速的工具,做好企业的基本运营是根基

2020-09-15

阿里云架构师成长之路-云上常见架构设计及优化.txt

迁移,网络,数据库,云存储,云上容灾,弹性伸缩,基于容器和微服务,安全架构,混合云,企业专有云架构设计及解决方案

2021-10-15

Practical Guide to Agile Strategy Execution.pdf

数字化转型战略的敏捷执行,通过设计、架构、确定优先级,首先商业成功

2020-08-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除