[Gym] 101669G SEERC 2017 Robots

本文探讨了通过斜率优化和贪心算法解决特定问题的方法。通过对比不同顺序下算法的执行效果,展示了斜率作为关键参数的重要性,以及如何利用贪心策略达到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

斜率越大的放越前面,贪心模拟一次

#include<bits/stdc++.h>
using namespace std;
#define pow(a) ((a)*(a))

int n;

struct ver
{
    double a,t;
    void in(){scanf("%lf%lf",&a,&t);}
    #define cver const ver &
    friend bool operator < (cver a,cver b){return a.a>b.a;}
}a[10000];

inline double solve()
{
    double dis=0,v=0;
    for (int i=0;i<n;i++)
    {
        double nv=v+a[i].a*a[i].t;
        dis+=(pow(nv)-pow(v))/2/a[i].a;
        v=nv;
    }
    return dis;
}

int main()
{
    scanf("%d",&n);
    for (int i=0;i<n;i++) a[i].in();
    double a1=solve();
    sort(a,a+n);
    double a2=solve();
    printf("%.1lf\n",a2-a1);
}
### 安装 Isaac Gym Environments for Legged Robots #### 环境需求 为了成功安装 Isaac Gym Environments for Legged Robots,需满足以下硬件和软件要求: - **操作系统**: Ubuntu 18.04 或更高版本[^3]。 - **GPU 支持**: 需要具备 CUDA 计算能力 >=7.5 的 NVIDIA 显卡[^2]。 - **CUDA 和 cuDNN 版本**: 推荐使用与 PyTorch 兼容的 CUDA 版本 (通常为 CUDA 11.x)。 #### 软件依赖项 以下是必要的依赖库及其安装方法: - **NVIDIA Isaac Gym**: 参考官方 GitHub 页面下载预览版并完成安装。 - **PyTorch**: 使用 `conda` 创建虚拟环境,并通过以下命令安装兼容版本的 PyTorch: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` - **其他 Python 库**: 包括 NumPy, Matplotlib, SciPy 等常用科学计算工具。可以通过 pip 安装这些包: ```bash pip install numpy matplotlib scipy ``` #### 安装步骤概述 按照以下流程逐步设置开发环境: 1. 下载并解压 Isaac Gym 发布文件至目标目录: ```bash wget https://developer.nvidia.com/isaac-gym-preview-release tar -xvzf isaacgym.tar.gz ``` 2. 设置环境变量以便加载共享库: 将路径加入 `.bashrc` 文件中: ```bash export ISAAC_GYM_PATH=/path/to/isaac_gym export PYTHONPATH=$ISAAC_GYM_PATH/python:$PYTHONPATH source ~/.bashrc ``` 3. 克隆 Legged Gym 存储库作为高级接口层: ```bash git clone https://github.com/NVlabs/LeggedGym.git cd LeggedGym python setup.py develop ``` 4. 测试安装是否正常工作: 启动一个简单的模拟场景验证配置无误: ```python from legged_gym.envs import Anymal_C_Slope_Terrain_Env env = Anymal_C_Slope_Terrain_Env() obs = env.reset() done = False while not done: action = env.action_space.sample() obs, reward, done, info = env.step(action) ``` 以上过程涵盖了从基本物理引擎到特定机器人学习框架的整体搭建指南[^1][^3]。 #### 注意事项 确保所有组件版本匹配良好;任何不一致都可能导致运行时错误或性能下降。此外,在实际部署前还需充分测试不同条件下的稳定性表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值