近日,国内大模型独角兽月之暗面发布并开源的最新一代 MoE 架构基础模型 Kimi K2,不断在海外掀起热议。有最新数据显示,推出不到两天,该模型在大模型 API 聚合平台 OpenRouter 的 token 使用量就超越了马斯克创立的 xAI。前不久,xAI 刚发布号称“全球最强 AI”的 Grok 4。
据官方介绍,作为月之暗面首款开源发布的旗舰模型,Kimi K2 的总参数量达到 1 万亿(1T),激活参数为 32B,现已在 Kimi Web 端和 App 端中上线。有网友感叹道,“万亿参数级模型已开始能在非英伟达硬件上流畅运行……如果中国实验室能通过巧妙的路由策略,在更少的芯片上实现更强的智能,那么英伟达对 AI 硬件体系的垄断地位就会开始动摇。这是典型的 '压力下的创新’:拿不到高端芯片?没关系,我们重新设计一切,让自研硬件能发挥出更优性能。”
在代码、Agent、工具调用这三方面的相关基准测试中,该模型均取得开源模型中的 SOTA 成绩。除了基准性能测试,Kimi K2 在多个实际场景中也展现出更强的能力泛化和实用性,包括在前端开发任务中生成兼具设计感与视觉表现力的代码、自动将需求拆解为一系列格式规范和可直接执行的 ToolCall 结构和准确控制各种输出风格来改写文本等。
这几天,陆续有开发者分享测试与体验 Kimi K2 的使用感受以及与其他国内外知名大模型的能力对比情况。值得一提的是,Kimi K2 在开发者群体中的各种实测不仅没掉“链子”,而且表现似乎比官方给的预期更令人惊喜。在提到 Kimi K2 的帖子中,充斥着“不输 Claude 4 但便宜 80%!、唯一超越 R1 的存在...”等此类评价。
1 与 Claude Code 能力相当,但便宜了 80%
首先,不少用户踊跃测试了 Kimi K2 的真实编码能力,采取的方式为:直接将该模型连接到了 Claude Code。可以这样操作的原因是,Kimi K2 的 API 服务具备强通用性,能够兼容 OpenAI 和 Anthropic 两种 API 格式,也可以与各类框架良好兼容。
一位开发者在对比了模型性能情况与 token 价格后,得出的结果是:K2 的编码能力卓越,基本与 Claude 4 相当,但只需花费 Claude 4 的 20% 成本,唯一缺点是 API 有点慢。
多年 AI 行业从业者刘小排在使用「K2 版 Claude Code」后的感受则是:“Kimi K2 驱动下的 Claude Code,编程能力和原版 Claude Code 差别不大,能平替 85%。 如果用 DeepSeek 驱动,我认为只能平替 60%。”
有网友这样评价,“Claude Code 可以用 Kimi K2 的模型,这件事就很有意思。它证明了 Claude 这套 Agent 架构,基本可以适用于任何模型,理论上也支持 Gemini、Grok、o3。选择永远都在用户手里,而不在大模型公司的手里。”
此外,对于 Python 数据分析任务,Kimi K2 也能一次性搞定,还可以生成一个网站。“成本仅需几分钱”,测试用户表示。
还有用户分享了用 Kimi K2 几乎写完一整个前端组件库的案例,且过程完全由该模型自主实现,没有引用任何外部组件库。“只用非常简单的提示词,但是出来的效果超级好!”
其次,针对月之暗面强调的 Agent 工具调用能力,同样有不少用户进行了对比测试。
前 Anthropic AI 工程师、MagicPath 创始人兼 CEO Pietro Schirano 对 Kimi K2 的评价很高:“自 Claude 3.5 Sonnet 之后,它是第一款让我在生产环境中使用时感到放心的模型,也是第一个我觉得可以用作代理循环的非 Anthropic 模型。”他表示,Kimi K2 在工具调用和智能体循环方面表现极为出色,能够并行且可靠地调用多个工具,还具备“知道何时停止”的能力。
与此同时,有测试表明,Kimi-K2-Instruct 在创意写作、挑战性角色扮演两方面的评测指标上双双拿下榜单第一,并超越了 o3。有网友为月之暗面点赞称,“这是开源模型的又一胜利,太棒了。”“K2 的中文创意写作能力应该是唯一的超越 R1 的存在。”还有用户这样反馈道。
2 架构和 DeepSeek 高度“撞车”?
那么,如此“高性价比”的性能提升背后,Kimi 做了哪些技术创新呢?
据月之暗面介绍,Kimi K2 的预训练阶段使用 MuonClip 优化器实现万亿参数模型的稳定高效训练,在人类高质量数据成为瓶颈的背景下,有效提高 Token 利用效率,找到新的 Scaling 空间。其他关键技术包括大规模 Agentic Tool Use 数据合成和引入自我评价机制的通用强化学习等。
“严格来说,在预训练数据集近似有限且模型配置固定的情况下,token 利用率更高的优化器能产生更多智能。我们此前开发的 Moonlight 项目已证明,用于大语言模型训练时, Muon 优化器的性能显著优于广泛使用的 AdamW 优化器。”
值得注意的是,Kimi K2 与 DeepSeek V3 的架构高度相似,区别则在于:“注意力头数量更少、专家数量更多。”
对此,月之暗面也在技术博客中作了详细解释。其称,Kimi K2 的设计目的是进一步扩展 Moonlight,其架构与 DeepSeek-V3 相似。基于缩放律分析,他们减少了注意头的数量以提高长上下文效率,并增加了 MoE 的稀疏性以提高 token 效率。
在扩展过程中,他们还遇到一个持续的挑战:由爆炸性注意力 logit 引起的训练不稳定性,这个问题在我们的实验中更频繁地出现在 Muon 上,而在 AdamW 上则较少出现;现有的解决方案,如 logit 软上限和查询 - 键归一化,被发现不足以解决问题。为此,他们才决定引入了 MuonClip 优化器,通过其提出的 qk-clip 技术改进 Muon。具体来说,qk-clip 通过在 Muon 更新后直接重新调整查询和键投影的权重矩阵来稳定训练,从而在源头上控制注意力 logit 的规模。
这已经是月之暗面与 DeepSeek 第三次在技术研究方向上“撞车”了。今年 2 月,两家公司都围绕挑战 Transformer 架构最核心的注意力机制方面,各自提出了在核心思想上非常一致的架构。到 4 月,又分别推出了用于数学定理证明的大模型,且在技术报告中都提到了强化学习。
至于 Kimi K2 增强的智能体能力,源于两个重要方面:大规模智能体数据合成与通用强化学习。据介绍,为了让模型掌握复杂的工具使用能力,他们借鉴 ACEBench 开发了一套全面的流程,可大规模模拟现实世界中的工具使用场景,系统性地扩展了包含数千种工具的数百个领域(既包括真实的 MCP(模型上下文协议)工具,也包括合成工具),随后生成了具备多样化工具集的数百个智能体。
据悉,DeepSeek 0 广告投放却爆火后,月之暗面就叫停了在各平台的大面积投流,之后将重心转到基础模型上。此前有消息称,其对 AI 医疗产品进行了布局,用于提升旗下产品 Kimi 在专业领域的搜索质量,并且探索 Agent 等产品方向,发布了 Deep Research 等。
在 Kimi K2 发布的当晚,其联合创始人张宇韬在朋友圈转发文章时直言,"Make Kimi Great Again"。显然,月之暗面内部对 Kimi K2 寄予了厚望,并将其视作在 DeepSeek 冲击 AI 圈后、再度站稳脚跟的关键成果。