1. 工具发现(Tool Discovery)
-
客户端行为:
用户输入问题后,客户端(如Claude Desktop)向已配置的MCP服务器(如高德地图MCP服务)发送请求,获取可用的工具列表。-
请求示例(HTTP GET):
-
http复制GET https://mcp.amap.com/tools/list
响应示例(JSON):
json复制{
"tools": [
{
"name": "maps_weather",
"description": "查询指定城市的实时天气数据",
"parameters": {
"city": "string"
}
}
]
}
-
LLM决策:
LLM(如Claude)解析用户问题,匹配工具描述,发现maps_weather
工具适合回答天气查询,并提取参数city: "北京"
。
2. 工具调用(Tool Execution)
-
客户端发起调用:
客户端根据LLM生成的参数,向MCP服务器发送工具调用请求。-
请求示例(HTTP POST):
-
http复制POST https://mcp.amap.com/tools/call
Headers: {"Content-Type": "application/json"}
Body: {
"tool": "maps_weather",
"parameters": {"city": "北京"}
}
MCP服务器执行:
高德地图MCP服务收到请求后:
-
验证API权限和参数有效性。
-
调用内部天气API(如高德开放平台)获取实时数据。
-
返回结构化结果。
-
响应示例:
json复制{
"result": {
"city": "北京",
"weather": "晴天",
"temperature": "22℃",
"humidity": "45%"
}
}
3. 结果整合(Response Generation)
-
LLM生成自然语言回复:
LLM接收MCP返回的JSON数据,转换为用户友好的自然语言:plaintext复制"北京今天晴天,22℃,湿度45%。"
- 关键动作:
- 提取
weather
和temperature
字段。 - 忽略冗余数据(如湿度,除非用户明确询问)。
- 补充上下文(如“今天”)。
- 提取
4. 协议交互流程图
关键设计特点
- 解耦LLM与工具:
- LLM无需预置工具代码,通过动态发现和调用扩展能力。
- 标准化接口:
- 所有工具遵循相同的
/tools/list
和/tools/call
端点。
- 所有工具遵循相同的
- 安全控制:
- MCP服务器可限制敏感工具(如数据库写入)的访问权限。
对比其他协议(如OpenAI Function Calling)
特性
MCP协议
OpenAI Function Calling
工具发现
动态获取(需主动请求/tools/list
)
静态预定义(在API请求中传递工具描述)
执行方式
客户端直接调用MCP服务器
由OpenAI后端代理调用工具
适用场景
私有化部署、复杂工具链
快速集成OpenAI生态工具
通过这一流程,MCP协议实现了自然语言→工具调用→自然语言的闭环,同时保持灵活性和安全性。开发者可通过扩展MCP服务器支持更多工具(如股票查询、航班预订),而无需修改LLM核心逻辑。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集