大模型MCP示例

1. 工具发现(Tool Discovery)​​

  • ​客户端行为​​:
    用户输入问题后,客户端(如Claude Desktop)向已配置的MCP服务器(如高德地图MCP服务)发送请求,获取可用的工具列表。

    • ​请求示例​​(HTTP GET):

http复制GET https://mcp.amap.com/tools/list

​响应示例​​(JSON):

json复制{
  "tools": [
    {
      "name": "maps_weather",
      "description": "查询指定城市的实时天气数据",
      "parameters": {
        "city": "string"
      }
    }
  ]
}
  • ​LLM决策​​:
    LLM(如Claude)解析用户问题,匹配工具描述,发现maps_weather工具适合回答天气查询,并提取参数city: "北京"

​​2. 工具调用(Tool Execution)​​

  • ​客户端发起调用​​:
    客户端根据LLM生成的参数,向MCP服务器发送工具调用请求。

    • ​请求示例​​(HTTP POST):

http复制POST https://mcp.amap.com/tools/call
Headers: {"Content-Type": "application/json"}
Body: {
  "tool": "maps_weather",
  "parameters": {"city": "北京"}
}

​MCP服务器执行​​:
高德地图MCP服务收到请求后:

  1. 验证API权限和参数有效性。

  2. 调用内部天气API(如高德开放平台)获取实时数据。

  3. 返回结构化结果。

  • ​响应示例​​:

json复制{
  "result": {
    "city": "北京",
    "weather": "晴天",
    "temperature": "22℃",
    "humidity": "45%"
  }
}

​​3. 结果整合(Response Generation)​​

  • ​LLM生成自然语言回复​​:
    LLM接收MCP返回的JSON数据,转换为用户友好的自然语言:

    plaintext复制"北京今天晴天,22℃,湿度45%。"
    
  • ​关键动作​​:
    • 提取weathertemperature字段。
    • 忽略冗余数据(如湿度,除非用户明确询问)。
    • 补充上下文(如“今天”)。

​​4. 协议交互流程图​​

关键设计特点​​

  1. ​解耦LLM与工具​​:
    • LLM无需预置工具代码,通过动态发现和调用扩展能力。
  2. ​标准化接口​​:
    • 所有工具遵循相同的/tools/list/tools/call端点。
  3. ​安全控制​​:
    • MCP服务器可限制敏感工具(如数据库写入)的访问权限。

​​对比其他协议(如OpenAI Function Calling)​​

特性

MCP协议

OpenAI Function Calling

​工具发现​

动态获取(需主动请求/tools/list

静态预定义(在API请求中传递工具描述)

​执行方式​

客户端直接调用MCP服务器

由OpenAI后端代理调用工具

​适用场景​

私有化部署、复杂工具链

快速集成OpenAI生态工具

通过这一流程,MCP协议实现了​​自然语言→工具调用→自然语言​​的闭环,同时保持灵活性和安全性。开发者可通过扩展MCP服务器支持更多工具(如股票查询、航班预订),而无需修改LLM核心逻辑。

  零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

 

 

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

 

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取(扫下方二v码即可100%领取)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值