hadoop+Spark+django基于大数据技术的短视频数据分析(源码+文档+调试+可视化大屏)

收藏关注不迷路!!

🌟文末获取源码+数据库🌟

感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人


前言

  Django基于Hadoop的短视频数据分析系统是一个强大的解决方案,它结合了Django的高效Web开发框架和Hadoop的分布式存储与计算能力,为短视频平台的数据分析提供了有力支持。以下是对该系统的详细介绍:
一、系统背景与目的
随着短视频行业的蓬勃发展,平台积累了大量用户行为数据和视频内容数据。为了深入了解用户需求、优化推荐算法、提高用户体验,并实现精准营销和高效运营,基于Django和Hadoop的短视频数据分析系统应运而生。

详细视频演示

文章底部名片,联系我看更详细的演示视频

一、项目介绍

开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js

二、功能介绍

后端框架:Django,一个高级的Python Web框架,鼓励快速开发和干净、实用的设计。它提供了丰富的功能,如ORM(对象关系映射)、模板引擎、中间件等,使得开发者能够专注于业务逻辑的实现。
大数据处理平台:Hadoop,一个分布式存储和计算框架,能够高效地处理海量数据。Hadoop包括HDFS(Hadoop Distributed File System)和MapReduce等核心组件,分别负责数据的存储和计算。
开发语言:Python,一种易于学习且功能强大的编程语言。Python在数据分析领域有着广泛的应用,拥有众多数据分析库和算法。
数据库:MySQL或其他关系型数据库,用于存储系统的元数据和分析结果。
前端技术:HTML、CSS、JavaScript等,用于构建用户友好的Web界面,展示数据分析结果。
三、系统功能
数据采集:系统能够从多个短视频平台采集丰富的数据,包括视频内容数据(如视频标题、描述、标签等)和用户行为数据(如播放量、点赞数、评论数、分享数等)。
数据存储:利用Hadoop的HDFS组件,系统能够存储海量的短视频数据,并确保数据的安全性和可扩展性。
数据处理与分析:借助Python的数据分析库和算法,系统能够对采集到的数据进行预处理、清洗和格式转换,进而进行深入的数据分析。分析内容包括但不限于视频的流行趋势、用户行为模式、内容特征等。
数据可视化:Django构建的Web界面提供了直观的数据展示功能。通过图表(如柱状图、折线图、饼图等)和报表等形式,运营人员可以清晰地了解短视频的热度变化、用户偏好分布等关键信息。
实时监控与更新:系统具备实时监控功能,能够随着数据的变化和用户行为的动态调整推荐策略。同时,系统支持数据的定期更新和重新分析,以确保分析结果的准确性和时效性。

三、核心代码

部分代码:


def users_login(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")
        if req_dict.get('role')!=None:
            del req_dict['role']
        datas = users.getbyparams(users, users, req_dict)
        if not datas:
            msg['code'] = password_error_code
            msg['msg'] = mes.password_error_code
            return JsonResponse(msg)

        req_dict['id'] = datas[0].get('id')
        return Auth.authenticate(Auth, users, req_dict)


def users_register(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")

        error = users.createbyreq(users, users, req_dict)
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


def users_session(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}

        req_dict = {"id": request.session.get('params').get("id")}
        msg['data'] = users.getbyparams(users, users, req_dict)[0]

        return JsonResponse(msg)


def users_logout(request):
    if request.method in ["POST", "GET"]:
        msg = {
            "msg": "退出成功",
            "code": 0
        }

        return JsonResponse(msg)


def users_page(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code,
               "data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
        req_dict = request.session.get("req_dict")
        tablename = request.session.get("tablename")
        try:
            __hasMessage__ = users.__hasMessage__
        except:
            __hasMessage__ = None
        if __hasMessage__ and __hasMessage__ != "否":

            if tablename != "users":
                req_dict["userid"] = request.session.get("params").get("id")
        if tablename == "users":
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = users.page(users, users, req_dict)
        else:
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = [],1,0,0,10

        return JsonResponse(msg)


四、效果图

请添加图片描述

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

五、文章目录

目 录
摘 要 1
Abstract 2
第1章 绪 论 5
1.1研究背景 5
1.2研究的目的 5
1.3国内外研究现状 6
1.4 课题研究的主要内容 6
第2章 相关技术 7
2.1 Python语言 7
2.2 Django框架 7
2.3 MySQL数据库 7
2.4 VUE技术 8
2.5 Hadoop介绍 9
2.6 推荐算法介绍 9
2.7系统运行环境 9
2.8本章小结 10
第3章 系统分析 11
3.1系统可行性分析 11
3.1.1经济可行性分析 11
3.1.2技术可行性分析 11
3.1.3操作可行性分析 11
3.2系统现状分析 12
3.3系统用例分析 12
3.4系统流程分析 14
3.5本章小结 15
第4章 系统设计 16
4.1系统功能结构设计图 16
4.2数据库设计 16
4.3本章小结 30
第5章 系统实现 31
5.1系统功能实现 31
5.1.1前台首页页面实现 31
5.1.2个人中心页面实现 32
5.2 后台模块实现 33
5.2.1管理员模块实现 33
5.2.2服务人员模块实现 38
5.3本章小结 38
第6章 系统测试 39
6.1系统测试目的 39
6.2系统功能测试 39
6.3系统测试结论 40
6.4本章小结 40
结 论 41
参考文献 42
致 谢 43

六 、源码获取

下方名片联系我即可!!


大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值