- 博客(110)
- 收藏
- 关注
原创 基于YOLOv8进行训练桥梁底部缺陷识别检测数据集、评估和推理。桥梁裂缝缺陷数据集_训练的权重模型识别腐蚀,裂缝,混凝土劣化 潮湿, 路面退化,收缩裂缝等
基于YOLOv8进行训练桥梁底部缺陷识别检测数据集、评估和推理。桥梁裂缝缺陷数据集_训练的权重模型识别腐蚀,裂缝,混凝土劣化 潮湿, 路面退化,收缩裂缝等
2025-06-30 08:27:16
727
原创 基于YOLOv8进行路面积水识别数据集+系统代码。括数据集准备、模型训练、评估和推理路面道路积水数据集 4524,xml和txt标签都有
本文介绍了一个基于YOLOv8的路面积水检测项目,提供完整的数据集和代码实现。数据集包含4524张标注图片(XML和TXT格式),类别为"puddle"。项目内容包括:1) XML转YOLO格式的数据预处理;2) 数据集分割(80%训练/20%验证);3) YOLOv8模型训练配置;4) 模型评估与推理脚本。代码展示了数据集转换、训练参数设置以及可视化检测结果的方法,最终生成最佳模型权重文件。该项目可帮助快速实现道路积水识别,适用于智能交通和道路安全监测场景。(148字)
2025-06-29 18:26:36
1060
原创 基于YOLOv8和PyQt5的课堂行为检测系统 训练脚本、检测工具、GUI程序和其他必要的文件。深度学习目标检测中使用Yolov8训练学生课堂行为检测数据集的训练。
摘要:基于YOLOv8和PyQt5的课堂检测系统实现了学生行为的实时智能监测。系统采用模块化设计,包含数据预处理、模型训练、检测工具和GUI界面四大模块,支持自定义数据集训练(如举手、睡觉、玩手机等行为识别)。通过PyQt5构建的交互界面简化了操作流程,用户无需编程基础即可使用。项目提供完整的代码架构,包括训练脚本、检测工具和可视化程序,并采用YOLO标准格式处理标注数据。该系统具有检测精度高、响应速度快、扩展性强等特点,可满足不同教学场景的智能化管理需求。
2025-06-29 09:07:22
860
原创 基于YOLOv8和Faster R-CNN的输电线路异物目标检测项目 检测 输电线异物数据集 输电线缺陷数据集 绝缘子 如何使用YOLOv8和Faster R-CNN训练输电线路异物目标检测数据集
本文介绍了一个包含16000张输电线路缺陷检测图片的数据集,涵盖5类目标(爆裂、缺陷、异物、绝缘体、窝巢),提供YOLO格式标注。详细说明了数据集结构、标签转换方法(XML转YOLO格式),并给出YOLOv8和Faster R-CNN两种模型的训练流程。包括环境配置、数据准备和训练脚本实现,支持直接用于目标检测算法开发。数据集已按训练/验证/测试集划分,适用于电力线路缺陷智能检测任务。
2025-06-28 09:21:07
560
原创 基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)
摘要:本文介绍了一个基于YOLOv8的桃子成熟度检测系统,包含数据集构建、模型训练和GUI应用开发。系统采用3849张田间环境下的桃子图像(9个品种),分为训练集(2690张)和验证集(1159张),标注为三类成熟度(未熟、半熟、成熟)。项目结构完整,涵盖数据预处理、模型训练评估及PyQt5界面开发,支持图片/视频/摄像头输入。通过YOLOv8模型实现高精度检测,GUI界面提供便捷的交互式检测功能,适用于果园自动化管理场景。
2025-06-27 18:57:52
794
原创 基于YOLOv8的海面石油泄露检测实例分割完整含数据集 使用深度学习框架如PyTorch或TensorFlow,基于YOLO系列的模型结构,进行训练来实现目标检测
本文介绍了基于YOLOv8的海面石油泄漏检测实例分割解决方案。通过收集标注海面石油泄漏图像数据集,利用YOLOv8模型进行训练,实现了高效的泄漏检测与分割。系统采用PyTorch框架,包含数据预处理、模型训练、验证测试等完整流程。训练好的模型可部署到海洋监测系统中,通过实时视频流分析,快速识别石油泄漏区域并标注位置。实验结果显示,该方法能有效检测各类石油泄漏情况,为海洋环境保护提供技术支持。文中还给出了模型部署的代码示例,展示了如何集成到实际监控系统中实现自动化检测。
2025-06-27 11:08:40
810
原创 基于YOLOv8的车牌号检测系统,包括UI界面设计、实时摄像头检测、模型训练以及整体代码实现车牌号码识别数据集 车牌号数据集识别
本文介绍了一个基于YOLOv8的车牌识别系统开发方案。系统采用7800张带标注的车牌数据集(VOC/YOLO格式),包含70个类别。通过YOLOv8训练模型,并设计PyQt5界面实现图片、视频和实时摄像头检测功能。文章详细说明了数据集结构、YOLO标注格式、数据配置文件设置、模型训练命令以及UI界面代码实现。该系统可实现高效的车牌检测,界面简洁易用,支持模型替换和扩展应用。
2025-06-27 09:51:20
448
原创 基于yolov5风力发电风扇检测 风力发电机数据集 发电扇数据集检测 风力发电风扇实现可视化及评估 Yolo格式
摘要:本文介绍了一个使用YOLOv5模型进行风力发电扇叶检测的完整解决方案。项目包含训练数据集、预训练模型和完整代码实现,可用于风力发电设备的自动化检测。系统采用标准YOLOv5架构,经过50个epoch的训练,在风力扇叶检测任务上表现出色。项目结构清晰,包含数据准备、模型训练、评估和推理全流程脚本,并提供了可视化功能。实验结果表明,该系统能够准确识别风力发电设备中的扇叶组件,为风电设备的智能运维提供了有效技术手段。
2025-06-23 07:48:54
1097
原创 基于YOLOv5的人体行为检测 5类
摘要:本项目开发了一个基于YOLOv5目标检测算法的人体行为识别系统,能够准确检测跌倒、站立、蹲下、坐下和跑五种常见行为。系统使用包含3000张图像的自建数据集(训练集2400张,验证集600张),每类行为均有600个标注样本。项目提供了完整的训练流程,包括环境配置、数据集准备、模型训练与验证等环节,并支持YOLO格式和VOC格式标注文件。实验结果表明,该系统能够有效识别多种人体行为,在安全监控、医疗护理等领域具有实际应用价值。项目包含完整的代码、数据集和文档,方便复现和二次开发。
2025-06-21 10:45:24
754
原创 基于YOLO8水稻病虫害检测系统 水稻病虫害检测系统 YOLO目标检测算法 识别图片与视频支持本地摄像头识别,图片识别支持统计检测到的物体数量,UI界面动态调节模型置信度
本文介绍了一种基于YOLOv8的水稻病虫害智能检测系统,该系统采用Streamlit框架构建Web应用服务。系统主要特点包括:(1)支持图片、视频和本地摄像头三种检测方式,图片识别可统计病虫害数量;(2)提供友好的UI界面,可动态调节模型置信度和选择不同权重;(3)模型精度高,mAP@50达到83.9%;(4)提供Windows系统免环境配置安装包,解压即可运行;(5)采用轻量化设计,仅200余行代码,注释详细便于二次开发;(6)支持服务器部署,服务端口为8501。
2025-06-19 08:45:17
683
原创 基于XLSTM和Transformer的序列时间序列预测模型的实现。这个模型结合了XLSTM的改进门控机制和Transformer的注意力机制,适用于多种时间序列预测任务,如功率预测、风电光伏预测、负
本文提出了一种结合XLSTM和Transformer的新型时间序列预测模型。XLSTM是LSTM原作者在2024年提出的改进版本,通过指数门控和新型记忆结构增强了传统LSTM的性能。该模型将XLSTM的门控机制与Transformer的注意力机制相结合,可用于功率预测、风电光伏预测等多种时间序列任务。
2025-06-18 18:01:36
773
原创 基于vgg16和efficientnet卷积神经网络的天气识别系统(pytorch框架) 图像识别与分类 前端界面_flask+python, UI界面_pyqt5+python,构建天气识别系统
本文介绍了一个基于VGG16和EfficientNet卷积神经网络的天气识别系统。系统采用PyTorch框架进行模型训练,包含完整的项目代码、数据集、训练记录和评估指标(准确率、精确率、召回率、F1值等)。前端界面使用Flask搭建Web服务,UI界面采用PyQt5实现图形化操作,支持用户上传天气图像并获取预测结果。项目提供了两个卷积神经网络模型的选择,并展示了训练过程中的损失曲线和准确率曲线等可视化指标。系统结构完整,包括数据预处理、模型训练、评估和应用部署全流程。
2025-06-17 21:31:18
727
原创 基于Ultralytics的RT-DETR改进思考
本文介绍了基于Ultralytics RT-DETR模型的系列改进方案,通过9种创新方法优化ResNet18骨干网络。主要包括:1)采用DCNV2动态可变形卷积;2)结合CascadedGroupAttention优化iRMB模块;3)融合RepConv与PConv技术;4)整合RepConv和Faster-Block结构;5)应用EMA技术增强Faster-Block;6)组合RepConv和EMA双重优化;7)利用DilatedReparamBlock改进DWR模块;8)引入P2检测层优化网络架构;
2025-06-15 09:04:46
902
原创 基于TransU-Net的遥感图像语义分割与分类 如何运行+训练?
本项目提出基于TransU-Net的遥感图像建筑物分割方法,结合Transformer的全局建模能力和U-Net的局部细节捕捉优势。项目实现包含完整的训练框架:1)构建标准化的数据集目录结构;2)开发专门的数据加载与增强模块;3)设计TransU-Net混合架构,通过Transformer编码器提取全局特征,U-Net解码器实现精确分割。系统采用PyTorch实现,提供从数据预处理到模型训练的全流程解决方案,适用于城市规划、灾害监测等遥感图像分析场景。
2025-06-14 11:11:55
1114
原创 基于Transformer Encoder-Decoder架构的时间序列预测模型,另外是Informer模型。这两个模型都适合多变量输入和单变量输出,并且可以从Excel_CSV文件中读取数据。
本文提出了一种基于Informer的时间序列预测模型,适用于股票预测、风电预测等多种场景。模型采用PyTorch框架实现,支持多变量输入、单变量输出,并包含完整的Encoder-Decoder结构。代码实现了数据预处理(包括滑动窗口处理和标准化)、位置编码、数据嵌入等关键模块,以及完整的训练评估流程。用户可轻松替换Excel/CSV格式的自定义数据集。该解决方案提供了从数据加载到模型预测的完整流程,可作为时间序列预测任务的基准框架使用,默认配置即可获得良好预测效果。
2025-06-12 14:36:12
1019
原创 基于RNN(循环神经网络)LSTM(长短期记忆网络)轴承故障诊断模型,处理DataCastle轴承故障预测数据集
本文提出了一种基于LSTM的轴承故障诊断方法,采用DataCastle轴承故障数据集,从数据预处理到模型构建、训练和验证进行了完整流程。首先对数据进行归一化处理并调整为LSTM所需的3D张量格式;然后构建包含LSTM层和Dropout层的深度网络结构;最后在验证集上评估模型性能并对测试集进行预测。实验结果表明该方法能够有效识别轴承故障类型,为工业设备的智能运维提供了可行方案。文中还详细列出了所需环境依赖和实施代码,具有较高的工程实用价值。
2025-06-12 07:42:27
311
原创 基于pytorch深度学习框架开发多模态情感分析 语音模态与文本模态特征注意力融合
本文提出了一种基于PyTorch框架的多模态情感分析方法,通过注意力机制融合语音和文本特征。研究采用EATD_Corpus数据集(包含负面、中性和正面三类样本),使用预训练的多语言BERT模型处理文本特征,Wav2Vec2模型提取语音特征。模型架构包含文本编码器、语音编码器和多模态注意力融合模块,其中注意力机制用于特征交互。实验部分详细描述了数据处理流程、模型构建和训练过程。该方法为解决跨语言情感分析任务提供了有效方案,具有较好的实际应用价值。
2025-06-11 16:21:23
416
原创 基于PyTorch框架实现,展示如何使用ResNet50进行特征提取,并结合MMD用于领域适应,迁移学习在轴承故障诊断中的应用
本文提出一种基于PyTorch的迁移学习方法,结合ResNet50特征提取与最大均值差异(MMD)的轴承故障诊断模型。通过预训练ResNet50提取源域和目标域特征,利用MMD损失缩小域间分布差异,实现跨域故障分类。代码包含数据加载、模型定义(DANNet)、训练流程及MMD计算,支持自定义二维图像数据集。实验表明,该方法有效提升目标域诊断准确率,适用于不同工况的轴承故障迁移任务。核心创新点在于融合深度特征与域适应技术,为工业设备故障诊断提供新思路。
2025-06-11 08:31:47
1052
原创 基于PyTorch和YOLOv5的完整代码训练使用——衣物皮革类数据集_织物布匹缺陷检测数据集 5921张(6类)深度学习目标检测模型训练
以上步骤提供了一个完整的框架,用于使用YOLOv5训练织物疵点检测数据集。代码包括数据准备、模型训练、评估和结果可视化等多个步骤。希望这些代码对你有帮助!如果有任何问题或需要进一步的调整,请随时告诉我。
2025-06-09 15:51:14
670
原创 基于PyTorch和ResNet50的性别识别与年龄预测系统 图片及视频性别识别和年龄预测 男女识别检测
基于PyTorch和ResNet50的性别识别与年龄预测系统 图片及视频性别识别和年龄预测 男女识别检测深度学习图像处理_性别识别、年龄预测,pytorch/resnet50基于pytorch训练的多任务学习,性别识别二分类,年龄预测用MSE损失函数。程序使用opencv和face_recognition检测人脸。同学:需下载相关库,如opencv,torchvison,matplotlib,dlib,face_recognition等等可支持图片、视频、实时摄像头检测以下是一个基于 PyTorch
2025-06-09 08:16:19
761
原创 基于PyTorch的完整代码示例,实现了KAN(Kernel Attention Network)与Transformer、LSTM、BiGRU、GRU和TCN结合的时间序列预测模型
以上代码提供了一个完整的框架,用于实现KAN结合Transformer、LSTM、BiGRU、GRU和TCN的时间序列预测模型。代码包括数据读取、预处理、模型构建、训练、评估和结果可视化等多个步骤。
2025-06-08 16:24:40
1071
原创 基于Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。使用传统图像分割方法,非深度学习方法。使用LIDC-IDRI数据集。
本文介绍了一个基于MATLAB的肺结节分割系统,采用传统图像处理方法(非深度学习),针对LIDC-IDRI数据集开发。系统功能完整:1)读取DICOM格式CT图像并显示;2)实施Gamma矫正、直方图均衡化等图像增强处理;3)通过阈值分割提取肺质区域;4)基于灰度及形态学特征分割肺结节;5)可视化医生标注文件;6)计算IOU、DICE等评价指标;7)提供GUI界面。项目采用模块化设计,包含图像读取、增强、分割等处理模块,并支持性能评估。
2025-06-08 09:02:13
860
原创 基于LRW-1000(CAS-VSR-W1k)数据集来进行中文唇语数据集识别任务 中文唇语识别数据集。唇语识别数据。公开唇语识别数据。
中文唇语识别系统构建摘要:基于LRW-1000(CAS-VSR-W1k)数据集开发中文唇语识别系统,该数据集是目前最大的公开中文唇语数据集,可用于数字人和Wav2Lip等应用。系统实现包含数据预处理、模型训练和评估全流程。采用AV-Sync模型架构,通过视频帧提取和音频特征处理实现多模态识别。代码提供完整的数据加载、模型定义及训练配置,支持GPU加速。环境需Python 3.8+和PyTorch等基础库,数据集包含1,000个词语类别,组织为视频和转录文本的标准化结构。系统可扩展用于实际场景的唇语识别应用。
2025-06-07 17:03:47
1339
原创 基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。
摘要:本文介绍了一个基于BERT预训练模型的中文多标签文本分类系统,采用Transformer架构实现双向语义理解。系统包含数据预处理、模型构建、训练和评估全流程,支持数百个标签分类。技术实现包括BERT分词、多标签二值化处理、自定义分类模型架构(线性层+BCE损失),以及训练评估方法(F1分数和准确率)。该系统可广泛应用于内容管理、信息检索等领域,为中文文本分析提供高效解决方案。
2025-06-07 09:48:40
502
原创 基于+python+opencv的手势识别系统 用Python的OpenCV、Sklearn和PyQt5等库搭建手势识别系统
本文介绍了一个基于Win10+Python3.7环境的手势识别系统,使用OpenCV、Sklearn和PyQt5库实现1-10静态手势识别。系统流程包含:1)HSV肤色检测与图像锐化预处理;2)轮廓特征提取(如HOG特征);3)SVM模型训练;4)PyQt5界面开发。示例代码展示了实时摄像头图像处理、特征预测及结果显示功能。该系统通过肤色分割、图像增强和机器学习算法实现手势识别,可作为智能交互应用的基础框架,后续可通过增加训练数据优化识别准确率。
2025-06-06 08:12:38
695
原创 基于 TensorFlow 2 的 WGAN来生成表格数据、数值数据和序列数据。 WGAN生成对抗网络。代码仅供参考
摘要:本文介绍如何配置Python环境并实现基于TensorFlow 2的WGAN模型用于生成表格/数值/序列数据。环境配置需安装tensorflow、numpy等库。代码包含四个核心部分:1) 数据加载与标准化预处理;2) 构建带梯度惩罚的WGAN模型,包括生成器、判别器网络和Wasserstein损失函数;3) 训练过程实现,采用随机采样和梯度惩罚机制;4) 提供数据生成接口。该模板支持自定义数据维度和类型,用户需替换数据路径并调整网络参数以适应具体任务,注意代码需根据实际数据特征修改输入输出维度。
2025-06-05 14:39:32
650
1
原创 基于 PyTorch 的中文情绪分类实现,可支持RNN、LSTM 和 GRU 模型切换
本文介绍了一个基于PyTorch的中文情绪分类系统,支持RNN、LSTM和GRU三种神经网络模型切换。系统包含数据预处理(分词、词汇表构建)、模型训练与评估(支持GPU加速)、可视化UI界面和训练结果展示等功能。通过jieba进行中文分词,使用PyTorch实现神经网络模型,并提供完整的训练流程(包括损失函数计算和准确率评估)。该项目适合中文情感分析任务,代码结构清晰,可扩展性强,可作为文本分类任务的实践参考。
2025-06-05 08:29:19
923
原创 基于 PyTorch 的 VGG16 深度学习人脸识别检测系统的实现+ui界面
本文介绍了一个基于PyTorch的VGG16深度学习人脸识别检测系统。主要内容包括:1) 数据准备,使用ImageFolder加载人脸数据集并进行标准化处理;2) 模型定义,加载预训练VGG16并修改全连接层以适应分类任务;3) 训练与评估,使用交叉熵损失和Adam优化器进行模型训练;4) 可视化UI界面,通过PyQt5构建GUI应用支持图片加载和实时预测。该系统支持GPU加速训练,可实现人脸分类功能,并提供了完整的代码实现方案。
2025-06-04 08:30:38
508
原创 基于 Django 和 Python 的电影推荐系统,通过协同过滤算法和用户画像聚类算法
本项目实现了一个基于Django框架的电影推荐系统,通过协同过滤算法和用户画像聚类算法提供个性化推荐。系统采用Python+MySQL技术栈,包含完整的数据库设计、推荐算法实现和可视化界面。核心功能包括:采用余弦相似度的协同过滤算法计算用户偏好,使用K-means聚类的用户画像分析,以及Django后端与前端交互的推荐展示。项目结构清晰,包含用户/电影数据模型、评分矩阵处理、算法模块和响应式前端界面,为用户提供个性化的电影推荐服务。系统可根据用户历史评分和特征聚类结果生成TOP5推荐列表。
2025-06-03 19:54:17
393
原创 红外光伏类_如何使用深度学习目标检测框架训练使用_光伏热红外缺陷数据集 2类 热斑光伏数据集的可视化和检测及评估
本文详细介绍了使用YOLOv8构建光伏热红外缺陷检测系统的完整流程。系统针对1万+标注数据(XML格式转换为YOLO格式),包含两类缺陷:单点热斑(0)和局部热斑(1)。关键步骤包括:1)环境部署(PyTorch+Ultralytics);2)数据集准备与格式转换(提供XML转YOLO的Python脚本);3)模型训练配置;4)可视化界面开发(PyQt5)。数据集标注量为单点热斑6000、局部热斑4000,按7:3划分训练验证集。文中包含完整的数据预处理代码和文件结构说明,适合工程实践参考。
2025-06-03 18:30:32
783
原创 构建实现深度学习目标检测中的_基于Yolov11的目标检测系统+pyqt5,数据库为sqlite3 可对YOLOv8_9_10_11进行支持
摘要:本文介绍了基于YOLOv11和PyQt5的目标检测系统开发方案。系统采用SQLite3数据库存储用户信息,包含登录/注册界面(输入用户名密码,验证身份)和目标检测界面(加载YOLO模型进行图像检测)。技术实现包括:1)配置Python环境(安装ultralytics等库) 2)设计用户数据库表结构 3)使用PyQt5开发GUI界面 4)集成YOLO模型实现目标检测功能。系统流程为:用户登录→加载检测界面→选择图片→模型推理→显示检测结果。开发过程中需注意模型版本兼容性和数据库安全设计。
2025-06-03 17:16:25
399
原创 构建实现深度学习目标检测中的_基于Yolov11的目标检测系统+pyqt5,数据库为sqlite3 可对YOLOv8_9_10_11进行支持
本文介绍了一个基于YOLOv11目标检测系统的实现方案,系统采用PyQt5构建GUI界面,SQLite3作为数据库。主要内容包括:1) 环境配置,安装必要库如ultralytics和PyQt5;2) 数据库设计,创建用户表存储账号信息;3) 登录/注册功能实现,提供用户认证界面;4) 目标检测界面开发,使用YOLO模型进行图像检测和结果显示。该系统实现了从用户认证到目标检测的完整流程,可扩展支持实时视频检测等功能。系统界面友好,代码结构清晰,适合计算机视觉初学者实践学习。
2025-06-03 14:32:53
443
原创 构建基于深度学习的人体姿态估计系统 数据预处理到模型训练、评估和部署 _如何利用人体姿态识别估计数据集_数据进行人体姿态估计研究的建议Human3.6M
本文介绍了基于Human3.6M数据集构建人体姿态估计系统的方法。该数据集包含11位受试者在15种日常场景下的多模态数据,包括RGB视频、深度图像、3D姿态信息等。数据集按受试者分为训练/验证组(S1,S5-S9,S11)和测试组(S2-S4,S10),并提供多种数据格式如RawAngles、D3 Positions等。研究建议包含数据预处理、模型设计与训练、多模态融合等关键步骤,强调保持训练测试集独立性和使用MPJPE评价指标。文章还提供了简单的Python代码示例展示HDF5格式数据的读取方法。
2025-06-03 12:06:17
1289
原创 构建基于yolov10麦穗目标检测系统 小麦麦头数据集检测 实现对麦穗4000张数据的处理 深度学习目标检测处理
本文介绍了基于YOLOv10的麦穗目标检测项目,包含4000张1024×1024分辨率的麦穗数据集,支持YOLO(txt)和COCO(json)两种标注格式。项目提供完整实现方案:1)数据集准备与格式转换脚本;2)YOLOv8/v10模型训练代码;3)关键指标可视化(F1曲线、准确率、召回率、损失曲线等);4)PyQt5 GUI界面设计。文中详细说明了数据集目录结构、环境配置步骤(Python3.9+PyTorch+Ultralytics),并提供了COCO转YOLO格式的Python脚本。
2025-06-02 09:44:32
1168
原创 构建基于YOLOv8智慧化工地管理系统,用于工地要素分割与检测。系统将涵盖10大要素(工人佩戴安全帽、不佩戴安全帽、预制构件、混凝土运输车、渣土车、搅拌车、挖掘机、压路车、推土车、装载车)深度学习
摘要:本文介绍基于YOLOv8构建智慧化工地管理系统的方法,用于检测10类工地要素(安全帽佩戴人员、工程车辆等)。系统采用COCO格式标注的5万张图像数据集(含8万标注),提供完整实现方案:1)安装依赖库;2)数据准备与目录结构;3)关键代码实现,包括配置文件、模型训练脚本、检测工具函数及PyQt5界面程序。该系统可实现实时目标检测,为工地安全管理提供智能化解决方案。
2025-06-01 14:47:33
887
原创 构建基于 YOLOv8Pose 和 CRNN 的水表刻度识别系统,包括数据集准备、环境部署、模型训练、指标可视化展示
本文提出了一种基于YOLOv8Pose和CRNN的水表刻度智能识别方法。系统首先使用YOLOv8Pose进行水表指针关键点检测,然后通过CRNN模型识别数字刻度。研究采用1500张单类别水表图像构建数据集,详细介绍了YOLO格式数据集的训练流程和PPOCR识别模型的实现步骤。实验结果表明,该方法能有效完成水表读数的端到端识别,并提供了完整的ONNX推理工作流代码,包括模型训练权重保存、指标可视化等关键环节,为工业场景下的水表自动读数提供了可行的技术方案。
2025-06-01 10:13:54
1030
原创 改进的 A_算法的路径规划_如何优化路径规划的效率和准确性(路径规划+代码+教程)
本文提出了一种改进的A算法以优化路径规划效率与准确性。针对传统A算法在栅格地图建模、邻域节点选择、任务适应性和大规模地图计算等方面的不足,改进方案包括:1)构建多层次越野环境模型,细分为障碍物、威胁和道路模型;2)采用16-邻接节点选择方式,增强路径平滑性;3)优化子节点选择规则,避免斜穿威胁区域顶点;4)引入跳点搜索技术缩减搜索空间。通过实验验证,改进算法在复杂环境中能生成更安全、高效的路径。
2025-05-31 13:26:04
1161
原创 工地篇——使用YOLOv8来训练一个包含超过8000张高质量图像的智慧工业防护数据集。这个数据集包含17个类别,已标注为VOC和YOLO格式,可以直接用于模型训练。
本文介绍了使用YOLOv8训练智慧工业防护数据集的完整流程。数据集包含8000+张1080p图像,17个类别(如安全帽、手套、防护服等),超过7万个标注实例,提供VOC和YOLO格式标注。详细说明了数据目录结构、YAML配置文件设置、YOLOv8安装、训练命令参数配置(epochs=100、imgsz=1080等),以及模型评估、预测和数据增强方法。特别强调了数据质量检查、模型版本选择和超参数调优的重要性,为工业安全防护场景的目标检测任务提供了完整解决方案。
2025-05-31 10:40:12
1120
原创 工程类 如何使用Yolov8训练使用及评估 工地粉尘数据集检测 3833 1类 ‘dust‘ 步骤和代码示例应该如何
摘要:本文介绍了一个包含3833张图像的工地扬尘检测YOLO数据集,其中3066张用于训练,767张用于验证。数据集仅包含1个类别(dust),每张图像都有对应的标注框。文中详细说明了数据集的目录结构、YOLOv8模型的训练步骤(包括环境准备、数据集划分、配置文件创建等),并提供了模型评估和预测结果可视化的代码示例。通过8:2的比例划分训练集和验证集,该数据集适合用于工地扬尘检测模型的开发和优化。
2025-05-30 20:18:32
382
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人