构建基于yolov10麦穗目标检测系统 小麦麦头数据集检测 实现对麦穗4000张数据的处理 深度学习目标检测处理

yolov10麦穗目标检测项目,附h代码和麦穗数据集的检测
在这里插入图片描述

麦穗目标检测数据集4000张左右在这里插入图片描述

yolov8,yolov10系列

图像分辨率为1024x1024在这里插入图片描述

麦穗数据集标签有yolo格式(txt文件标签)和coco格式(json文件标签)
如何水处理这些数据在这里插入图片描述

声明:文章内所有代码仅供参考!

在这里插入图片描述
帮助你使用 YOLOv8 来训练麦穗目标检测项目,并提供完整的代码和数据集配置说明。

项目概述

我们将使用 YOLOv8 训练一个麦穗目标检测模型。以下是详细的步骤:

  1. 数据集准备:确保数据集格式正确。
  2. 环境部署:安装必要的库。
  3. 数据集转换(如果需要):将 COCO 格式转换为 YOLO 格式。
  4. 模型训练:使用 YOLOv8 训练模型。
  5. 指标可视化:查看训练过程中的各项指标。
  6. PyQt5 界面设计:创建一个简单的 GUI 应用来进行预测。

数据集结构

假设你的数据集已经准备好,并且是以 YOLO 和 COCO 格式存储的。以下是数据集的标准结构:

dataset/
├── images/
│   ├── train/
│   │   ├── image1.jpg
│   │   ├── image2.jpg
│   │   └── ...
│   ├── val/
│   │   ├── image3.jpg
│   │   ├── image4.jpg
│   │   └── ...
│   └── test/
│       ├── image5.jpg
│       ├── image6.jpg
│       └── ...
├── labels/
│   ├── train/
│   │   ├── image1.txt
│   │   ├── image2.txt
│   │   └── ...
│   ├── val/
│   │   ├── image3.txt
│   │   ├── image4.txt
│   │   └── ...
│   └── test/
│       ├── image5.txt
│       ├── image6.txt
│       └── ...
└── dataset.yaml

dataset.yaml 内容如下:

train: ./images/train
val: ./images/val

nc: 1
names: ['wheat_head']

每个图像对应的标签文件是一个文本文件,每行表示一个边界框,格式为:

<class_id> <x_center> <y_center> <width> <height>

环境部署说明

首先,确保你已经安装了必要的库。以下是详细的环境部署步骤:

安装依赖
# 创建虚拟环境(可选)
conda create -n wheat_detection_env python=3.9
conda activate wheat_detection_env

# 安装PyTorch
pip install torch==1.9 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu111

# 安装其他依赖
pip install opencv-python pyqt5 ultralytics scikit-learn pandas matplotlib seaborn

数据集转换(如果需要)

如果你的数据集是 COCO 格式的 JSON 文件,你需要将其转换为 YOLO 格式的 TXT 文件。以下是一个示例脚本 convert_coco_to_yolo.py

转换脚本 convert_coco_to_yolo.py
[<title="Convert COCO Format to YOLO Format">]
import json
import os
from PIL import Image

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[2])/2.0 - 1
    y = (box[1] + box[3])/2.0 - 1
    w = box[2]
    h = box[3]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(json_file, output_dir, img_dir):
    with open(json_file) as f:
        data = json.load(f)
    
    categories = {cat['id']: cat['name'] for cat in data['categories']}
    id_to_category = {k: i for i, k in enumerate(categories.keys())}
    
    for img in data['images']:
        txt_path = os.path.join(output_dir, f"{img['file_name'].split('.')[0]}.txt")
        with open(txt_path, 'w') as out_file:
            for ann in data['annotations']:
                if ann['image_id'] == img['id']:
                    bbox = ann['bbox']
                    category_id = ann['category_id']
                    class_id = id_to_category[category_id]
                    bb = convert((img['width'], img['height']), bbox)
                    out_file.write(f"{class_id} {' '.join(map(str, bb))}\n")

if __name__ == "__main__":
    coco_json = "path/to/dataset/annotations/instances_train2017.json"
    output_dir = "path/to/dataset/labels/train"
    img_dir = "path/to/dataset/images/train"
    
    convert_annotation(coco_json, output_dir, img_dir)

请将 path/to/dataset 替换为实际的数据集路径。

模型训练权重和指标可视化展示

我们将使用 YOLOv8 进行训练,并在训练过程中记录各种指标,如 F1 曲线、准确率、召回率、损失曲线和混淆矩阵。

训练脚本 train_yolov8.py
[<title="Training YOLOv8 on Wheat Head Detection Dataset">]
from ultralytics import YOLO
import os

# Define paths
dataset_path = 'path/to/dataset'
weights_path = 'runs/train/exp/weights/best.pt'

# Create dataset.yaml
yaml_content = f"""
train: {os.path.join(dataset_path, 'images/train')}
val: {os.path.join(dataset_path, 'images/val')}

nc: 1
names: ['wheat_head']
"""

with open(os.path.join(dataset_path, 'dataset.yaml'), 'w') as f:
    f.write(yaml_content)

# Train YOLOv8
model = YOLO('yolov8n.pt')  # Load a pretrained model (recommended for training)
results = model.train(data=os.path.join(dataset_path, 'dataset.yaml'), epochs=100, imgsz=1024, save=True)

# Save the best weights
best_weights_path = Path('runs/train/exp/weights/best.pt')
shutil.copy(best_weights_path, weights_path)

请将 path/to/dataset 替换为实际的数据集路径。

指标可视化展示

我们将编写代码来可视化训练过程中的各项指标,包括 F1 曲线、准确率、召回率、损失曲线和混淆矩阵。

可视化脚本 visualize_metrics.py
[<title="Visualizing Training Metrics for YOLOv8">]
import os
import json
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

# Load metrics
results_dir = 'runs/train/exp'
metrics_path = os.path.join(results_dir, 'results.json')

with open(metrics_path, 'r') as f:
    results = json.load(f)

# Extract metrics
loss = [entry['loss'] for entry in results if 'loss' in entry]
precision = [entry['metrics/precision(m)'] for entry in results if 'metrics/precision(m)' in entry]
recall = [entry['metrics/recall(m)'] for entry in results if 'metrics/recall(m)' in entry]
mAP_05 = [entry['metrics/mAP50(m)'] for entry in results if 'metrics/mAP50(m)' in entry]

# Plot loss curve
plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
plt.plot(loss, label='Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training Loss Curve')
plt.legend()

# Plot precision and recall curves
plt.subplot(1, 3, 2)
plt.plot(precision, label='Precision')
plt.plot(recall, label='Recall')
plt.xlabel('Epochs')
plt.ylabel('Score')
plt.title('Precision and Recall Curves')
plt.legend()

# Plot mAP@0.5 curve
plt.subplot(1, 3, 3)
plt.plot(mAP_05, label='mAP@0.5')
plt.xlabel('Epochs')
plt.ylabel('mAP@0.5')
plt.title('mAP@0.5 Curve')
plt.legend()

plt.tight_layout()
plt.show()

# Confusion matrix
# Assuming you have predictions and true labels
# For demonstration, let's create some dummy data
true_labels = np.random.randint(0, 2, size=100)  # 0 to 1 (background or wheat head)
predictions = np.random.randint(0, 2, size=100)  # 0 to 1 (background or wheat head)

cm = confusion_matrix(true_labels, predictions, labels=list(range(2)))
labels = ['Background', 'Wheat Head']

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
disp.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()

PyQt5设计的界面

我们将使用 PyQt5 设计一个简单的 GUI 界面来进行模型预测。

GUI代码 gui_app.py
[<title="PyQt5 GUI for YOLOv8 Wheat Head Detection">]
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QVBoxLayout, QWidget, QFileDialog, QMessageBox, QProgressBar, QTextEdit
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtCore import QTimer
from ultralytics import YOLO

class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Wheat Head Detection")
        self.setGeometry(100, 100, 800, 600)

        self.central_widget = QWidget(self)
        self.setCentralWidget(self.central_widget)

        self.layout = QVBoxLayout(self.central_widget)

        self.label_display = QLabel(self)
        self.layout.addWidget(self.label_display)

        self.button_layout = QHBoxLayout()

        self.pushButton_image = QPushButton("Open Image", self)
        self.pushButton_image.clicked.connect(self.open_image)
        self.button_layout.addWidget(self.pushButton_image)

        self.pushButton_folder = QPushButton("Open Folder", self)
        self.pushButton_folder.clicked.connect(self.open_folder)
        self.button_layout.addWidget(self.pushButton_folder)

        self.pushButton_video = QPushButton("Open Video", self)
        self.pushButton_video.clicked.connect(self.open_video)
        self.button_layout.addWidget(self.pushButton_video)

        self.pushButton_camera = QPushButton("Start Camera", self)
        self.pushButton_camera.clicked.connect(self.start_camera)
        self.button_layout.addWidget(self.pushButton_camera)

        self.pushButton_stop = QPushButton("Stop Camera", self)
        self.pushButton_stop.clicked.connect(self.stop_camera)
        self.button_layout.addWidget(self.pushButton_stop)

        self.layout.addLayout(self.button_layout)

        self.model = YOLO('runs/train/exp/weights/best.pt')
        self.cap = None
        self.timer = QTimer()
        self.timer.timeout.connect(self.process_frame)

    def load_image(self, file_name):
        img = cv2.imread(file_name)  # BGR
        assert img is not None, f'Image Not Found {file_name}'
        return img

    def process_image(self, img):
        results = self.model(img, stream=True)

        for result in results:
            boxes = result.boxes.cpu().numpy()
            for box in boxes:
                r = box.xyxy[0].astype(int)
                cls = int(box.cls[0])
                conf = box.conf[0]
                label = f'{self.model.names[cls]} {conf:.2f}'
                color = (0, 255, 0)  # Green
                cv2.rectangle(img, r[:2], r[2:], color, 2)
                cv2.putText(img, label, (r[0], r[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)

        rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        h, w, ch = rgb_image.shape
        bytes_per_line = ch * w
        qt_image = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
        pixmap = QPixmap.fromImage(qt_image)
        self.label_display.setPixmap(pixmap.scaled(800, 600))

    def open_image(self):
        options = QFileDialog.Options()
        file_name, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "Images (*.jpeg *.jpg);;All Files (*)", options=options)
        if file_name:
            img = self.load_image(file_name)
            self.process_image(img)

    def open_folder(self):
        folder_name = QFileDialog.getExistingDirectory(self, "Select Folder")
        if folder_name:
            for filename in os.listdir(folder_name):
                if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
                    file_path = os.path.join(folder_name, filename)
                    img = self.load_image(file_path)
                    self.process_image(img)

    def open_video(self):
        options = QFileDialog.Options()
        file_name, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "Videos (*.mp4 *.avi);;All Files (*)", options=options)
        if file_name:
            self.cap = cv2.VideoCapture(file_name)
            self.timer.start(30)  # Process frame every 30 ms

    def start_camera(self):
        self.cap = cv2.VideoCapture(0)
        self.timer.start(30)  # Process frame every 30 ms

    def stop_camera(self):
        if self.cap is not None:
            self.cap.release()
            self.cap = None
            self.timer.stop()

    def process_frame(self):
        if self.cap is not None:
            ret, frame = self.cap.read()
            if ret:
                self.process_image(frame)
            else:
                self.cap.release()
                self.cap = None
                self.timer.stop()

if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = MainWindow()
    window.show()
    sys.exit(app.exec_())

辅助工具文件 utils.py

这个文件可以用来存放一些辅助函数,比如保存结果等。

[<title="Utility Functions for Wheat Head Detection">]
import cv2
import os

def save_results(image, detections, output_dir, filename):
    for det in detections:
        r = det['bbox']
        cls = det['class']
        conf = det['confidence']
        label = f'{cls} {conf:.2f}'
        color = (0, 255, 0)  # Green
        cv2.rectangle(image, (int(r[0]), int(r[1])), (int(r[2]), int(r[3])), color, 2)
        cv2.putText(image, label, (int(r[0]), int(r[1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
    
    output_path = os.path.join(output_dir, filename)
    cv2.imwrite(output_path, image)

运行效果展示

假设你已经有了运行效果的图像,可以在 README.md 中添加这些图像以供参考。

# Wheat Head Detection System

## Overview
This project provides a deep learning-based system for detecting wheat heads in images using thermal infrared images. The system can identify wheat heads in images, folders, videos, and live camera feeds.

## Environment Setup
- Software: PyCharm + Anaconda
- Environment: Python=3.9, OpenCV-Python, PyQt5, Torch=1.9

## Features
- Detects wheat heads.
- Supports detection on images, folders, videos, and live camera feed.
- Batch processing of images.
- Real-time display of detected wheat heads with confidence scores and bounding boxes.
- Saving detection results.

## Usage
1. Run the program.
2. Choose an option to detect wheat heads in images, folders, videos, or via the camera.

## Screenshots
![Example Screenshot](data/screenshots/example_screenshot.png)

总结

通过以上步骤,可以构建一个完整的基于 YOLOv8 的麦穗目标检测系统,包括数据集准备、环境部署、模型训练、指标可视化展示和 PyQt5 界面设计。以下是所有相关的代码文件:

  1. 数据加载脚本 (load_data.py)
  2. 转换脚本 (convert_coco_to_yolo.py)
  3. 训练脚本 (train_yolov8.py)
  4. 指标可视化脚本 (visualize_metrics.py)
  5. GUI应用代码 (gui_app.py)
  6. 辅助工具文件 (utils.py)
  7. 文档 (README.md)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值