收藏关注不迷路!!需要的小伙伴可以发链接或者截图给我
项目介绍
随着消费者需求的变化和市场竞争的加剧,准确地把握市场动态、预测销售趋势成为二手车销售商提升竞争力的关键。通过对历史销售数据的深入分析,能够揭示消费者的购车偏好、价格敏感度等关键信息,为销售策略的制定提供有力支持。预测系统能够基于大数据和机器学习算法,预测未来市场走势,帮助销售商提前布局,抓住市场机遇。
本文首先探讨了二手车销售数据的分析与预测系统的背景和意义,随后深入研究了爬虫原理、获取策略、信息提取等常见技术。随后,采用Python进行系统开发,并以MySQL数据库搭建基础,实现了二手车数据的爬取。对数据库查询结果进行了检测和可视化分析与预测,并对系统的前台界面进行了有效管理。通过对爬取结果的分析,将二手车数据通过回归算法进行预测,以大屏显示形式呈现。最后,进行了全面测试,确保了数据爬取、存储过滤、数据可视化分析与预测以及系统管理等功能的实现。
在计算机信息化快速发展的背景下,二手车数据行业逐渐转向网络领域。本文主要探讨了二手车数据系统的设计和开发。该系统旨在收集并处理二手车数据,包括爬取、清理、存储和统计等功能。作为现代化二手车数据管理的重要组成部分,该系统为二手车数据推荐提供了便捷的模式。本文主要针对二手车数据网上的二手车数据信息进行爬取,收集各类二手车数据。通过对二手车数据的分析,整理并提取相关信息。首先,系统分析了二手车数据网的网站结构,观察网页布局,并读取其中的二手车数据信息。具体操作步骤包括指定二手车数据网的URL、爬取网页信息、获取特定的URL并将其存入队列中。之后,从网页中提取二手车数据信息,将其存入数据库,并针对二手车数据进行详细分析。最后,得出二手车数据的可视化视图。
项目展示
在系统前台,用户通过浏览器可以访问并查看二手车销售数据的分析与预测系统的所有大屏数据。而在系统后台,管理员则负责进行数据管理。
主要功能包括:
二手车数据信息采集与预处理:利用爬虫技术对二手车数据网上的二手车数据信息进行采集,并进行数据清洗,然后将数据存储到数据库中。
数据可视化:对二手车数据信息数据进行可视化处理并展示。
查询统计分析:进行二手车价格预测、车型统计、二手车信息、价格统计等。
用户信息管理:实现用户的注册、登录、注销及用户管理功能。
二手车数据信息管理:实现二手车数据信息的发布、修改及过期处理等功能。
详细视频演示
请联系我获取更详细的演示视频
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
技术栈
项目编号:
本课题使用Python语言进行开发。代码层面的操作主要在PyCharm中进行,将系统所使用到的表以及数据存储到MySQL数据库中,方便对数据进行操作本课题基于WEB的开发平台
开发语言:Python
框架:flask/django的都有
Python版本:python3.7.7
数据库:mysql
数据库工具:Navicat
开发软件:PyCharm
浏览器:谷歌浏览器
本系统的开发与设计是基于vue为前端页面核心框架为django/flask,技术方面主要采用了Html、Js、CSS3、python、Mysql。
通过使用关键技术研发本系统,并根据需求分析得出用户的主要需求,设计与实现本系统的功能模块。再通过系统测试,主要是功能测试,对系统进行纠错和改进,完善系统的不足之处,使得最后设计出的系统更能够符合使用者的需求。
文章下方名片联系我即可~
解决的思路
前端的数据收集及可视化研究,熟悉Django框架,python编程设计语法。
解决的问题是如何更好的设计一个简易而方便操作前端的页面,解决数据间的关系,调整数据表的结构
该系统采用面向对象的程序设计方法,该方法是一种基于结构分析的以数据为中心的程序设计方法,其主要思想是将数据及处理这些数据的操作都封装在一个叫做类的数据结构里。这种方法描述的现实世界模型贴切、合理,更符合人们认识世界的思维方法。
开发技术介绍
Python具有强大的优势,通过简洁的语法和类库进行操作。而且Python提供了许多的控制语句,比如if语句、for语句,while语句。在数据插入时也可以通过for语句来进行数据的逐条插入。Python也提供了数据库的操作接口,通过引入Python的MySQL处理对象连接数据库后,使用通用的SQL语句方法实现数据的存储。
在数据可视化程序中,使用Python面向对象编程的特点开发出通用的管理系统,并进行数据的展示、管理等基本操作。另外,Python具有简洁的开发特点,每一行代码都更接近于自然语言的特点,可以方便初学者进行理解,其简洁的语语法特点,更适用于本系统的开发。
框架介绍
Django遵循标准的MVC模式设计,也就是模型视图,控制器和界面。通过MVC搭建系统后台,实现框架的可伸缩性,易维护性和安全性等方面,可以大大提高开发效率。在封装后的框架中控制层的代码可以自动完成,程序员通过代码实现业务功能,Django简洁快速的数据库驱动方法带来了很大的发展,许多项目和系统都基于Django进行开发
Flask框架的主要特征是核心构成比较简单,但具有很强的扩展性和兼容性,程序员可以使用Python语言快速实现一个网站或Web服务。一般情况下,它不会指定数据库和模板引擎等对象,用户可以根据需要自己选择各种数据库。Flask是目前十分流行的web框架,采用Python编程语言来实现相关功能。
性能/安全/负载方面
在设计系统时,充分考虑到当前系统可能存在的最高并发数量,并由此选择对应的硬件服务器和对应的宽带容量,上传下载的速率等问题。对于系统的查询速度已经控制在两秒之内。同时考虑当遇到高并发时是否会影响查询时间。
安全性需求,对于所有的管理系统来说,数据安全都是非常重要的,要严格控制其数据的安全性,防止外泄和被不法分子盗取。所以,系统应该设置不同的操作权限,并加强数据库的加密管理和访问控制,并定期对数据进行维护,及时进行数据备份。
python语言
Python的扩展性也很好,其可以利用c语言编写模块,编译链接到解释器,从而使Python能够调用该c模块中的接口。反之,C语言也能将Python解释器连接到C中,从而在C中调用Python。
因此Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言,其设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。
Django框架介绍
Django也是一个MVC框架。但是在Django中,控制器接受用户输入的部分由框架自行处理,所以 Django 里更关注的是模型(Model)、模板(Template)和视图(Views),称为 MTV模式:
M 代表模型(Model),即数据存取层。 该层处理与数据相关的所有事务: 如何存取、如何验证有效性、包含哪些行为以及数据之间的关系等。
T代表模板(Template),即表现层。 该层处理与表现相关的决定: 如何在页面或其他类型文档中进行显示。
V 代表视图(View),即业务逻辑层。 该层包含存取模型及调取恰当模板的相关逻辑。 你可以把它看作模型与模板之间的桥梁。
技术路线
②前端开发选择:Vue。
②后端开发选择:python、django/flask。
③数据库选择:MySQL。
④开发工具选择:pycharm、Navicat for MySQL。
关键代码
# coding:utf-8
__author__ = "ila"
from django.http import JsonResponse
from .users_model import users
from util.codes import *
from util.auth import Auth
import util.message as mes
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
详细视频演示
请联系我获取更详细的演示视频
文章下方名片联系我即可~