本文将手把手教你从零开始训练YOLO11-pose关键点检测模型,包含创新性的标注技巧和训练优化策略
关键点检测的无限可能
在计算机视觉领域,关键点检测(Keypoint Detection)技术正快速改变着我们的生活:从健身APP的动作识别,到虚拟试衣间的身材建模,再到工业质检中的零件定位,这项技术无处不在。YOLO系列作为目标检测领域的标杆,最新推出的YOLO11-pose模型将关键点检测性能推向了新高度——在速度和精度之间取得了完美平衡。
本文将带你完成从数据标注到模型训练的全流程实战,包含多个创新点:
- 创新标注方案:结合labelme与半自动标注提升效率
- 数据增强优化:针对关键点任务的特化增强策略
- 模型训练技巧:学习率动态调整和损失函数优化
一、环境配置与安装
首先搭建开发环境,推荐使用Python 3.8+:
# 创建虚拟环境
conda create -n yolo11_pose python