机缘
由于朋友需要在安卓设备上封装人体姿态识别功能,经过调研,找到了几种实现方案,涵盖深度学习和计算机视觉的不同工具及框架。
1. 基于深度学习的姿态识别:
TensorFlow Lite:使用TensorFlow的轻量级版本进行姿态识别,适合移动设备。TensorFlow Lite提供了一些预训练模型,可以直接在Android应用中使用。
PyTorch Mobile:类似于TensorFlow Lite,但使用PyTorch框架。也可以在Android设备上运行深度学习模型。
2.OpenCV:
OpenCV提供了多种计算机视觉功能,包括人体姿态估计。通过结合其他机器学习模型(如HOG+SVM或深度学习模型),可以在Android设备上实现姿态识别。
3.MediaPipe:
Google的MediaPipe是一个强大的跨平台框架,专门用于实时计算机视觉任务,包括人体姿态识别。MediaPipe的Pose模块提供高效、准确的姿态识别,适合在移动设备上使用。
4. 自定义模型:
可以使用自己的数据集训练特定的姿态识别模型,然后将其转换为适合Android设备的格式(如ONNX、TensorFlow Lite等)。这种方式可以根据具体需求优化性能。
性能比较
准确性:深度学习模型(如使用TensorFlow Lite或PyTorch Mobile)通常提供较高的准确性,尤其是在复杂场景中。
速度:MediaPipe因其高度优化的架构和算法,在实时性能方面表现突出,通常优于其他框架,适合实时应用。
资源占用:OpenCV和MediaPipe在资源占用方面表现良好,适合低性能设备。