LSTM模型预测时间序列(快速上手)

本文详细介绍了如何利用LSTM模型预测地下水位埋深。首先,对时间序列数据进行预处理,包括连接日期和时间,删除无关列,转换为datetime格式,并绘制数据趋势图。接着,通过差分和转换为监督学习形式构建数据集,再将其分为训练集和测试集,并进行缩放。然后,构建并训练LSTM模型,最后进行模型泛化,将预测值逆差分和逆缩放以恢复真实值。通过这种方法,可以有效地预测地下水位的变化趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

        LSTM模型的一个常见用途是对长时间序列数据进行学习预测,例如得到了某商品前一年的日销量数据,我们可以用LSTM模型来预测未来一段时间内该商品的销量。但对于不熟悉神经网络或者对没有了解过RNN模型的人来说,想要看懂LSTM模型的原理是非常困难的,但有些时候我们不得不快速上手搭建一个LSTM模型来完成预测任务。下面我将对一个真实的时间序列数据集进行LSTM模型的搭建,不加入很多复杂的功能,快速的完成数据预测功能。

        问题大概如下:某煤矿有一个监测井,我们每20分钟获取一次该监测井的地下水位埋深,共获取了30000多条真实数据,数据集包括采样日期,采样时间,LEVEL,温度,电导率,地下水位埋深等信息。使用采样日期、采样时间和地下水位埋深这三个信息训练LSTM模型,预测未来的水位高度。

        本文处理的数据暂不方便公开,但我可以提供另外一份真实的时序数据,是社交平台上经济类话题的文章热度信息,约4000多条数据。数据包括时间和热度两个部分,热度是真实的,但时间做了平移处理不是真实的。在调用下面的代码时需要把数据处理的部分和测试集的数量修改一下。

链接:时序数据


数据预处理

        首先读入数据,简单查看一下数据的前几行,代码如下:

data=pd.read_csv("data.csv")
print(data.head())

        输出如下图所示:

        很显然,对于我们有用的信息只有Date、Time、地下水位埋深这三列。而且为了规范数据集,我们将Date列和Time列连接起来,并转换为python中的datetime格式。所以先将Date列和Time列用空格连接起来,然后将保留Date列和地下水位埋深列,其他列全部删除,代码如下:

data=pd.read_csv("data.csv")
data['Date']=data['Date']+' '
data['Date']=data['Date']+data['Time']
data.drop(['Time','LEVEL','TEMPERATURE','CONDUCTIVITY','Num'],axis=1,inplace=True)
data['Date']=pd.to_datetime(data['Date'])
print(data.head())

        打印处理后数据的前几列,如下图所示:

        现在将Date列设为索引,即可绘制出地下水位埋深随时间变化的折线图,代码如下:

series = data.set_index(['Date'], drop=True)
plt.figure(figsize=(10, 6))

series['地下水位埋深'].plot()
plt.show()

        输出的折线图如下:

        此时series中的数据可视为原始数据,下面要用它来构建训练神经网络的数据集。


构建数据集

        1、首先将DataFrame格式的数据转换为二维数组的格式,例如将数据前三行进行转换后变成:[[4.6838],[4.6882],[4.7048]]。然后将其进行差分转换,就是除第一个数字外,其他数改为它本身与它前一个数的差值,例如前三行数据进行差分转换后为:[[4.6882-4.6838],[4.7048-4.6882]]。代码如下:

def difference(data_set,interval=1):
    diff=list()
    for i in range(interval,len(data_set)):
        value=data_set[i]-data_set[i-interval]
        diff.append(value)
    return pd.Series(diff)

# 这里的series是之前数据预处理后得到的DateFrame型数据
raw_value=series.values
diff_value=difference(raw_value,1)

        进行差分转换后,数据变成了这样的形式:

        2、将时间序列形式的数据转换为监督学习集的形式,例如:[[10],[11],[12],[13],[14]]转换为[[0,10],[10,11],[11,12],[12,13],[13,14]],即把前一个数作为输入,后一个数作为对应输出。

def timeseries_to_supervised(data,lag=1):
    df=pd.DataFrame(data)
    columns=[df.shift(1)]
    columns.append(df)
    df=pd.concat(columns,axis=1)
    df.fillna(0,inplace=True)
    return df

supervised=timeseries_to_supervised(diff_value,1)
supervised_value=supervised.values

        解释一下函数体中的转换过程,首先将data转换为DataFrame格,shift(1)函数可以将数据整体下移一行,类似于原来是[10,11,12,13,14],执行shift(1)函数后成为:[NaN,10,11,12,13],溢出的数据直接丢弃。append()函数可以将两个DataFrame格式的数据连接起来,但两者又是分离的,类似于这样:[[NaN,10,11,12,13],[10,11,12,13,14]],只不过这里我用数组进行了类比。然后使用concat()函数将两个分离的DataFrame格式数据融合到一起,类似于这样:[[NaN,10],[10,11],[11,12],[12,13],[13,14]],但这里是数组形式的类比,不是DataFrame数据的真实情况。经过这一系列的处理后,数据变成了下面这个样子,可以跟上面的图进行对比来理解这里的操作过程:

        3、将数据集分为训练集和测试集,这个问题下的数据有30000多条,就设置测试集为后6000条,代码如下:

testNum=6000
train,test=supervised_value[:-testNum],supervised_value[-testNum:]

        4、将训练集和测试集中的数据都缩放到[-1,1]之间,可以加快收敛。

def scale(train,test):
    # 创建一个缩放器,将数据集中的数据缩放到[-1,1]的取值范围中
    scaler=MinMaxScaler(feature_range=(-1,1))
    # 使用数据来训练缩放器
    scaler=scaler.fit(train)
    # 使用缩放器来将训练集和测试集进行缩放
    train_scaled=scaler.transform(train)
    test_scaled=scaler.transform(test)
    return scaler,train_scaled,test_scaled

scaler,train_scaled,test_scaled=scale(train,test)

        其中MinMaxScaler是一种缩放器,初始化后,使用训练集数据来训练好这个缩放器,然后对训练集和数据集都进行缩放。这个缩放器在之后预测的时候还要用来进行逆缩放,将预测值还原到真实的量纲上。此时训练集变成了下图这个样子,数据集已经构建完成,下面开始训练LSTM模型。


训练LSTM模型

        1、首先将训练集中的输入和输出两列分为x和y,并将输入列转换为三维数组,此时X是一个[N*1*1]的数组,代码如下:

X,y=train[:,0:-1],train[:,-1]
X=X.reshape(X.shape[0],1,X.shape[1])

        此时的X是这样子的三维数组:

        2、初始化LSTM模型并开始训练,设置神经元核心的个数,设置训练时输入数据的格式等等。对于预测时间序列类的问题,可直接使用下面的参数设置:

def fit_lstm(train,batch_size,nb_epoch,neurons):
    # 将数据对中的x和y分开
    X,y=train[:,0:-1],train[:,-1]
    # 将2D数据拼接成3D数据,形状为[N*1*1]
    X=X.reshape(X.shape[0],1,X.shape[1])

    model=Sequential()
    model.add(LSTM(neurons,batch_input_shape=(batch_size,X.shape[1],X.shape[2]),stateful=True))
    model.add(Dense(1))

    model.compile(loss='mean_squared_error',optimizer='adam')
    for i in range(nb_epoch):
        # shuffle是不混淆数据顺序
        his=model.fit(X,y,batch_size=batch_size,verbose=1,shuffle=False)
        # 每训练完一次就重置一次网络状态,网络状态与网络权重不同
        model.reset_states()
    return model

# 构建一个LSTM模型并训练,样本数为1,训练次数为3,LSTM层神经元个数为4
lstm_model=fit_lstm(train_scaled,1,3,4)

        此时lstm_model就是一个训练好的LSTM模型,我们可以使用它来进行测试。


模型的泛化

        首先列出一条数据的处理过程:

        1、将一条数据的输入和输出列分开,并且将输入进行变换,传入到预测函数中进行单步预测,详见注释,代码如下:

def forecast_lstm(model,batch_size,X):
    # 将形状为[1:]的,包含一个元素的一维数组X,转换形状为[1,1,1]的3D张量
    X=X.reshape(1,1,len(X))
    # 输出形状为1行一列的二维数组yhat
    yhat=model.predict(X,batch_size=batch_size)
    # 将yhat中的结果返回
    return yhat[0,0]

# 取出测试集中的一条数据,并将其拆分为X和y
X,y=test[i,0:-1],test[i,-1]
# 将训练好的模型、测试数据传入预测函数中
yhat=forecast_lstm(lstm_model,1,X)

        2、得到预测值后对其进行逆缩放和逆差分,将其还原到原来的取值范围内,详见注释,代码如下:

# 对预测的数据进行逆差分转换
def invert_difference(history,yhat,interval=1):
    return yhat+history[-interval]

# 将预测值进行逆缩放,使用之前训练好的缩放器,x为一维数组,y为实数
def invert_scale(scaler,X,y):
    # 将X,y转换为一个list列表
    new_row=[x for x in X]+[y]
    # 将列表转换为数组
    array=np.array(new_row)
    # 将数组重构成一个形状为[1,2]的二维数组->[[10,12]]
    array=array.reshape(1,len(array))
    # 逆缩放输入的形状为[1,2],输出形状也是如此
    invert=scaler.inverse_transform(array)
    # 只需要返回y值即可
    return invert[0,-1]

# 将预测值进行逆缩放
yhat=invert_scale(scaler,X,yhat)
# 对预测的y值进行逆差分
yhat=invert_difference(raw_value,yhat,len(test_scaled)+1-i)

        遍历全部测试集数据,对每行数据执行以上操作,并将最终的预测值保存下来,代码如下:

predictions=list()
for i in range(len(test_scaled)):
    # 将测试集拆分为X和y
    X,y=test[i,0:-1],test[i,-1]
    # 将训练好的模型、测试数据传入预测函数中
    yhat=forecast_lstm(lstm_model,1,X)
    # 将预测值进行逆缩放
    yhat=invert_scale(scaler,X,yhat)
    # 对预测的y值进行逆差分
    yhat=invert_difference(raw_value,yhat,len(test_scaled)+1-i)
    # 存储正在预测的y值
    predictions.append(yhat)

预测结果的可视化

        将测试集的y值和预测值绘制在同一张图表中,代码如下。这个问题的数据集非常大,LSTM的训练效果非常好,标准差大概为2,预测结果符合预期。

plt.plot(raw_value[-testNum:])
plt.plot(predictions)
plt.legend(['true','pred'])
plt.show()


完整代码

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.layers import LSTM
from keras.layers import Dense
from keras.models import Sequential
from sklearn.metrics import mean_squared_error
import numpy as np
import math

# 数据的差分转换
def difference(data_set,interval=1):
    diff=list()
    for i in range(interval,len(data_set)):
        value=data_set[i]-data_set[i-interval]
        diff.append(value)
    return pd.Series(diff)

# 对预测的数据进行逆差分转换
def invert_difference(history,yhat,interval=1):
    return yhat+history[-interval]

# 将数据转换为监督学习集,移位后产生的NaN值补0
def timeseries_to_supervised(data,lag=1):
    df=pd.DataFrame(data)
    columns=[df.shift(i) for i in range(1,lag+1)]
    columns.append(df)
    df=pd.concat(columns,axis=1)
    df.fillna(0,inplace=True)
    return df

# 将数据缩放到[-1,1]之间
def scale(train,test):
    # 创建一个缩放器,将数据集中的数据缩放到[-1,1]的取值范围中
    scaler=MinMaxScaler(feature_range=(-1,1))
    # 使用数据来训练缩放器
    scaler=scaler.fit(train)
    # 使用缩放器来将训练集和测试集进行缩放
    train_scaled=scaler.transform(train)
    test_scaled=scaler.transform(test)
    return scaler,train_scaled,test_scaled

# 将预测值进行逆缩放,使用之前训练好的缩放器,x为一维数组,y为实数
def invert_scale(scaler,X,y):
    # 将X,y转换为一个list列表
    new_row=[x for x in X]+[y]
    # 将列表转换为数组
    array=np.array(new_row)
    # 将数组重构成一个形状为[1,2]的二维数组->[[10,12]]
    array=array.reshape(1,len(array))
    # 逆缩放输入的形状为[1,2],输出形状也是如此
    invert=scaler.inverse_transform(array)
    # 只需要返回y值即可
    return invert[0,-1]

# 构建一个LSTM模型
def fit_lstm(train,batch_size,nb_epoch,neurons):
    # 将数据对中的x和y分开
    X,y=train[:,0:-1],train[:,-1]
    # 将2D数据拼接成3D数据,形状为[N*1*1]
    X=X.reshape(X.shape[0],1,X.shape[1])

    model=Sequential()
    model.add(LSTM(neurons,batch_input_shape=(batch_size,X.shape[1],X.shape[2]),stateful=True))
    model.add(Dense(1))

    model.compile(loss='mean_squared_error',optimizer='adam')
    for i in range(nb_epoch):
        # shuffle是不混淆数据顺序
        his=model.fit(X,y,batch_size=batch_size,verbose=1,shuffle=False)
        # 每训练完一次就重置一次网络状态,网络状态与网络权重不同
        model.reset_states()
    return model

# 开始单步预测
def forecast_lstm(model,batch_size,X):
    # 将形状为[1:]的,包含一个元素的一维数组X,转换形状为[1,1,1]的3D张量
    X=X.reshape(1,1,len(X))
    # 输出形状为1行一列的二维数组yhat
    yhat=model.predict(X,batch_size=batch_size)
    # 将yhat中的结果返回
    return yhat[0,0]

# 读取数据,将日期和时间列合并,其他列删除,合并后的列转换为时间格式,设为索引
data=pd.read_csv('data.csv')
data['Date']=data['Date']+' '
data['Date']=data['Date']+data['Time']
data.drop(['Num','LEVEL','TEMPERATURE','CONDUCTIVITY','Time'],axis=1,inplace=True)
data['Date']=pd.to_datetime(data['Date'])
series=data.set_index(['Date'],drop=True)

# 将原数据转换为二维数组形式,例如:
# [[4.6838],[4.6882],[4.7048]]
raw_value=series.values
# 将数据进行差分转换,例如[[4.6838],[4.6882],[4.7048]]转换为[[4.6882-4.6838],[4.7048-4.6882]]
diff_value=difference(raw_value,1)
#
# 将序列形式的数据转换为监督学习集形式,例如[[10],[11],[12],[13]]
# 在此将其转换为监督学习集形式:[[0,10],[10,11],[11,12],[12,13]],
# 即前一个数作为输入,后一个数作为对应的输出
supervised=timeseries_to_supervised(diff_value,1)
supervised_value=supervised.values

# 将数据集分割为训练集和测试集,设置后1000个数据为测试集
testNum=6000
train,test=supervised_value[:-testNum],supervised_value[-testNum:]

# 将训练集和测试集都缩放到[-1,1]之间
scaler,train_scaled,test_scaled=scale(train,test)

# 构建一个LSTM模型并训练,样本数为1,训练次数为5,LSTM层神经元个数为4
lstm_model=fit_lstm(train_scaled,1,1,4)
# 遍历测试集,对数据进行单步预测
predictions=list()
for i in range(len(test_scaled)):
    # 将测试集拆分为X和y
    X,y=test[i,0:-1],test[i,-1]
    # 将训练好的模型、测试数据传入预测函数中
    yhat=forecast_lstm(lstm_model,1,X)
    # 将预测值进行逆缩放
    yhat=invert_scale(scaler,X,yhat)
    # 对预测的y值进行逆差分
    yhat=invert_difference(raw_value,yhat,len(test_scaled)+1-i)
    # 存储正在预测的y值
    predictions.append(yhat)

# 计算方差
rmse=mean_squared_error(raw_value[-testNum:],predictions)
print("Test RMSE:",rmse)
plt.plot(raw_value[-testNum:])
plt.plot(predictions)
plt.legend(['true','pred'])
plt.show()

内容概要:本文详细介绍了基于Python实现LSTM多变量时间序列预测的方法,涵盖从项目背景、目标意义、挑战、特点创新到具体应用领域的全面解析。LSTM作为一种特殊的循环神经网络,能有效处理和预测时间序列数据中的长时依赖关系,尤其适用于多变量时间序列预测任务。文章强调了LSTM在金融、气象、智能制造等领域的广泛应用,并指出了数据质量、非平稳性、计算资源、超参数选择及模型解释性等方面的挑战。为了应对这些挑战,文中提出了数据预处理、模型调优等创新策略。此外,文章还提供了具体的模型架构和代码示例,包括数据预处理层、LSTM模型层、训练与优化阶段以及预测与评估层的设计,展示了如何用Keras构建双向LSTM模型并进行训练和预测。; 适合人群:对时间序列预测感兴趣的数据科学家、机器学习工程师及研究人员,特别是有一定Python编程基础并希望深入了解LSTM模型的人士。; 使用场景及目标:①金融领域,如股票价格、外汇市场、商品期货市场的趋势预测和风险管理;②气象预报领域,如气温、湿度、风速等气象参数的预测;③智能制造和工业自动化领域,如设备故障预测、能源消耗预测;④能源管理领域,如能源需求预测、智能电网负荷预测等。; 其他说明:文中提供的代码示例和模型架构有助于读者快速上手实践,同时也提醒读者关注数据质量和模型解释性等问题。建议读者在实践中结合自身应用场景进行适当的调整和优化。
LSTM(长短期记忆)是一种用于处理时间序列数据的循环神经网络模型。它具有记忆单元和门控机制,可以有效地捕捉长期依赖关系。 为了使用LSTM进行时间序列预测,你需要将输入数据转化为适合LSTM模型的格式。通常,你会将时间序列数据分为输入序列和目标序列。输入序列包含之前的观察值,而目标序列包含预测的观察值。 下面是使用LSTM进行时间序列预测的一般步骤: 1. 数据准备:将时间序列数据按照一定的时间窗口大小划分为输入序列和目标序列。 2. 数据预处理:对数据进行标准化或归一化处理,以便提高模型的训练效果。 3. 构建LSTM模型:使用Keras、PyTorch等深度学习框架构建LSTM模型。通常,LSTM模型由一个或多个LSTM层以及其他类型的层(如全连接层)组成。 4. 模型训练:使用训练数据对LSTM模型进行训练。通常,你会定义一个损失函数来衡量预测值与目标值之间的差异,并使用优化算法(如随机梯度下降)来最小化损失函数。 5. 模型评估:使用验证数据或测试数据对训练好的LSTM模型进行评估,以了解其在未见过的数据上的性能。 6. 预测结果:使用训练好的LSTM模型对未来的时间序列数据进行预测。 需要注意的是,构建一个准确的时间序列预测模型需要考虑多个因素,如数据的趋势、周期性、季节性等。此外,还可以通过调整模型的超参数、增加模型的复杂度等方式来改善预测性能。
评论 194
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值