MCP是近期的AI领域的热点,特别是在海外社区获得热烈讨论,每天都有大量MCP工具诞生。本期文章我们从MCP的概念,技术原理,到多场景实战,看懂MCP的全部内容。
概念
MCP,全称是Model Context Protocol,模型上下文协议,由Claude母公司Anthropic于去年11月正式提出。
MCP Server本质就是本地的一个Nodejs程序,AI客户端用命令行调用了本地的Node程序。 开源的MCP Server代码打开后,发现就是一个能接命令行的普通node程序。
为什么会出现MCP
如果你开发了一个 AI 应用,无论是 ChatBot 还是复杂的 Agent,都不会仅限于简单的 LLM 对话。很多时候,你需要与外部世界连接,以访问数据源或使用工具。例如:
操控浏览器实现自动化;
访问本地文件;
访问数据库结构,以便更好地让 AI 参与编程;
调用 CRM 的 API 以驱动智能客服流程。
在这种情况下,你需要连接不同的对象,使用不同的接口协议。你可能需要熟悉 SQL、HTTP 调用、Playwright 等接口,甚至还需要使用搜索引擎、访问云存储、调用第三方开放API等。这些都涉及大量的“粘合”工作。
MCP(模型上下文协议)正是为了解决这一问题。它允许 LLM 应用通过统一的协议连接外部资源,而无需逐个适配。MCP 通过增加一个中间层来实现这一点:LLM 应用通过统一的 MCP 协议连接到中间层(称为 MCP Server),而中间层则负责处理与外部资源的对接。
MCP 有哪些好处?
这种设计范式在软件系统中其实很常见,比如:一些大模型 API 网关会将不同厂家的大模型协议转化为统一的 OpenAI 兼容协议,方便应用接入。它的具体意义主要体现在以下几点:
简化 LLM 应用:无需适配各种私有协议,只需学会连接 MCP Server 即可。
快速扩展 LLM 应用:随时可以“插拔”新的 MCP Server,需要更多功能时,简单添加即可。
快速适应变化:如果外部资源的接口发生变化,只需在对应的 MCP Server 上进行修改,所有连接的 LLM 应用都能无缝适应。
构建新的 AI 能力共享生态:通过共享 MCP Server,新的 LLM 应用能够快速获得各种工具,形成一种新的合作体系,从而提升整体的效用。