蓝桥杯--最短路

本文介绍如何使用Python实现SPFA(Shortest Path Faster Algorithm)算法,处理包含负权边的有向图中从1号节点到其他节点的最短路径问题。适用于大规模数据,通过快读快写优化性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。
输入格式
第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。
输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
————————————————————————————————————————————————————
有负边权,用 spfa,数据比较多,用快读快写

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.Queue;

public class Main {
	static int N = 20010, M = 200010;
	static int INF = Integer.MAX_VALUE >> 1;
	static int[] h = new int[N];
	static int[] e = new int[M];
	static int[] ne = new int[M];
	static int[] w = new int[M];
	static int idx;
	static int[] dist = new int[N];
	static boolean[] st = new boolean[N];
	static int n;
	static int m; 
	static PrintWriter pw = new PrintWriter(System.out);
	
	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		String[] s1 = br.readLine().split(" ");
		n = Integer.parseInt(s1[0]);
		m = Integer.parseInt(s1[1]);
		Arrays.fill(h, -1);
		for (int i = 0; i < m; i++) {
			String[] s2 = br.readLine().split(" ");
			int a = Integer.parseInt(s2[0]);
			int b = Integer.parseInt(s2[1]);
			int c = Integer.parseInt(s2[2]);
			add(a, b,c);
		}
		spfa();
	}

	private static void spfa() {
		Arrays.fill(dist, INF);
		dist[1] = 0;
		Queue<Integer> q = new LinkedList<Integer>();
		q.add(1);
		st[1] = true;
		while (!q.isEmpty()) {
			Integer t = q.poll();
			st[t] = false;
			for (int i = h[t]; i != -1; i = ne[i]) {
				int j = e[i];
				if (dist[j] > dist[t] + w[i]) {
					dist[j] = dist[t] + w[i];
					if (!st[j]) {
						q.add(j);
						st[j] = true;
					}
				}
			}
		}
		for (int i = 2; i <= n; i++) {
			pw.println(dist[i]);
		}
		pw.flush();
	}

	private static void add(int a, int b, int c) {
		e[idx] = b;
		w[idx] = c;
		ne[idx] = h[a];
		h[a] = idx++;
	}
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值