基于Retinex的图像去雾算法——计算机视觉
图像去雾是计算机视觉领域的一个重要问题,它的目标是从雾化图像中恢复出清晰的原始图像。Retinex是一种常用的图像增强算法,它可以在去除雾霾的同时,提升图像的对比度和细节。本文将介绍基于Retinex的图像去雾算法,并提供相应的源代码实现。
一、算法原理
Retinex算法的核心思想是将图像分解为反射分量和照明分量两个部分,其中反射分量代表了图像的细节信息,照明分量则代表了图像的亮度和对比度。通过调整照明分量和增强反射分量,可以有效地去除雾霾并增强图像的可视化效果。
具体而言,基于Retinex的图像去雾算法可以分为以下几个步骤:
-
雾化图像预处理:首先,对输入的雾化图像进行预处理,包括调整图像的亮度和对比度,以及去除可能存在的噪声。
-
估计全局照明分量:利用Retinex算法中的全局照明估计方法,对预处理后的图像进行处理,得到估计的全局照明分量。
-
估计局部照明分量:使用Retinex算法中的局部照明估计方法,对雾化图像进行处理,得到估计的局部照明分量。
-
去除雾霾:通过将雾化图像减去估计的照明分量,得到反射分量。然后,根据反射分量和估计的全局照明分量重建去雾图像。
二、算法实现
下面是一个简单的基于Retinex的图像去雾算法的示例代码:
import cv2