YOLOv7 Series Improved: Combining YOLOv with Swin Transformer V2 Architecture, Swin Transformer V2: The Path to Visual Large Models in Computer Vision
计算机视觉领域一直在追求更高效、更准确的目标检测算法。在最近的研究中,YOLOv7系列结合了Swin Transformer V2结构,为目标检测任务带来了显著的提升。本文将详细介绍YOLOv7系列结合Swin Transformer V2的改进方法,并提供相应的源代码。
引言
目标检测是计算机视觉中的核心任务之一,旨在识别图像或视频中的特定目标并准确定位。YOLOv7系列是一系列基于YOLO(You Only Look Once)算法的目标检测模型,而Swin Transformer V2是一种高效的Transformer模型结构。将它们结合起来,可以充分利用Transformer的自注意力机制和YOLO的实时性能,从而在目标检测任务中取得更好的结果。
YOLOv7系列改进
YOLOv7系列是基于YOLOv3算法的改进版本,通过引入Swin Transformer V2结构,进一步提升了模型的性能。下面是YOLOv7系列改进的关键步骤:
步骤1:替换特征提取器
在YOLOv7系列中,我们将YOLOv3中的特征提取器替换为Swin Transformer V2。Swin Transformer V2是一种基于Transformer的图像分类模型,