作者:天善智能社区专家 PivotModel刘凯
数据化运营过程中的三个关键词,是开源、节流、保活跃。
在之前的两篇AARRR博文中,我们分别就新增用户、提升用户活跃度来进行展开。
在本篇博文中,我们重点“节流”,也就是AARRR中的留存和流失分析。
什么是留存(Retention)和流失(Churn)?
一般而言,留存(Retention)就是使用了一段时间的产品后,仍然留下来的那部分用户。在零售业和服务业,更多地使用交易数据,因此留存是指发生过交易或者消费的客户,在接下来的若干期间内,仍然重复交易或消费的客户。而流失(Churn)恰恰相反,是不再继续发生交易或者消费的客户。
Cohort Analysis,宏观上说是人群行为分析的一种,应用中特指留存分析、粘性分析。因此我们谈到留存(Retention)时,也会提到Cohort Analysis。
留存率是统计某个期间新增客户中,经过一段时间后仍然存在客户行为(如登陆、消费)的客户的比例。和回购率/复购率类似,留存不仅是个可以反映客户粘性的指标,更多地反映产品对用户的吸引力。
作为客户分析中最重要的指标之一,留存率一来可以衡量渠道拉新最终的结果——有多少人留下来,二来可以通过留存率来分析产品的使用情况。如果某产品新用户占比过高,那说明该产品的活跃可能是靠推广得来,尤其需要关注用户的留存率情况。
取决于数据基础和业务类型,对于游戏行业而言,通常比较容易计算首日、次日、3日、7日、14日以及30日留存率。对于一般的零售业和服务业(如餐饮),由于客户行为数据不然手机游戏互联网行业那么易于获得,因此可以采用最常用的销售明细数据,来计算流失和留存。
如图所示的留存率曲线,通常经历过一段时间后,留存率会下降到一定水平保持稳定(如10%),如果再整个过程中采取多项措施,将留存率提升到更高,比如50%。反映到后续的收入(Revenue)指标中,将给我们带来更高的收益。
留存率 vs 流失率的计算
直观来讲,留存是相对于流失而