PyCharm 搭建GPU远程环境

本文介绍如何在PyCharm中配置GPU远程环境,通过SSH连接至远程GPU服务器,加速计算机视觉等AI领域的模型训练过程。实测显示,相比本地运行,远程GPU能显著提升模型训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyCharm 搭建GPU远程环境

1.前言

随着GPU的发展,人工智能的诸多领域在性能上得到了质的飞跃。尤其是对于目前异常火爆的计算机视觉(CV)方向,更是离不开GPU的参与。

现实生活中,我们常常因为贫穷而买不起高性能的GPU。因此我们就需要一台远程的GPU服务器来帮助我们跑跑算法模型。

本文中,我们假设自己有一台远端的GPU服务器。

2.配置

首先我们先新建一个Project。进入File->Setting,选择项目下的Project Interpreter。
在这里插入图片描述
展开show all界面,点击添加按钮。
在这里插入图片描述
选择SSH解释器,输入想象的服务器地址和用户名。
在这里插入图片描述
此时如果用户名密码都正确,那就已经连接成功啦。下一步再解释器地址一栏里选择正确的解释器路径。
在这里插入图片描述
选择Tool->的deployment
在这里插入图片描述
选择服务器上对应的工程路径。
在这里插入图片描述
跑一个MNIST的CNN试试速度,按照如下的轮数运行。

model.fit(X_train,Y_train,nb_epoch=5,batch_size=1000)
00/60000 [==============================] - 15s - loss: 0.6707 - acc: 0.8148 

在我机器上的一轮需要1分半,这里只需要十五秒。加速还是比较客观的!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值