Floyd算法(最短路;例题UVA10048)

Floyd算法是计算图中所有顶点对最短路径的暴力方法,具有O(n^3)的时间复杂度。虽然速度较慢,但适用于任意起点。题目描述了一个关于城市声音污染的问题,要求根据道路的平均声强找出从一个路口到另一个路口的最低忍受声强。输入包含多组测试用例,每组包含交叉口数、街道数和查询数,输出是最小声强或'no path'提示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Floyd算法:求最短路的一种算法(最暴力的方法)复杂度O(n3)

特点:速度慢,但是任意起点的(与Dijkstra不同),程序不难,但很多题目都是变式,需要较深的理解(原理是动态规划)

标程:

#include <cstdio>
#include <iostream>
#define INF 0x3f3f3f3f
using namespace std;
int n,m,t,a,b,c;
int f[105][105];

int main()
{
	//有n个端点,m条边 
	cin >> n >> m >> t;
	//初始化 
	for (int i=1;i<=n;i++)
		for (int j=1;j<=n;j++)
		{
			if (i==j) f[i][j]=0;
			else f[i][j]=INF;
		}
	//输入边 
	for (int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&a,&b,&c);
		f[a][b]=c;
	}
	//核心代码 
	for (int k=1;k<=n;k++)
		for (int i=1;i<=n;i++)
			for (int j=1;j<=n;j++)
				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
	//查询 
	for (int i=1;i<=t;i++) 
	{
		scanf("%d%d",&a,&b);
		printf("%d\n",f[a][b]);		
	}
	return 0;
}

 

核心代码(4行):

 

for
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值