HDU5137How Many Maos Does the Guanxi Worth(最短路)

本文介绍了一种通过枚举并使用SPFA算法求解在特定条件下从起点到终点的最长路径的方法。针对一个给定的图,在移除某个特定中间节点后,找到从起点到终点的最大可能距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:从2~n-1这几个点中任意去掉一个点,使得从1到n的最短路径最大,如果任意去掉一个点1~n无通路输出Inf。

思路:枚举去掉2~n-1个点,依次用spfa算法求取最短路,去最大即可


#include<bits/stdc++.h>
using namespace std;
#define pii pair<int, int>
const int maxn = 35;
int n, m;
struct Edge
{
    int to, w;
    Edge(){}
    Edge(int to, int w):to(to), w(w){}
};
vector<Edge> a[maxn];
int dis[maxn], fib;
bool vis[maxn];
void dij(int s)
{
    memset(dis, 63, sizeof(dis));
    memset(vis, false, sizeof(vis));
    dis[s] = 0;
    vis[fib] = true;
    priority_queue<pii, vector<pii>, greater<pii> > q;
    q.push(pii(dis[s], s));
    while(!q.empty())
    {
        pii now = q.top();
        q.pop();
        int u = now.second, v;
        if(vis[u])
            continue;
        for(int i = 0; i < a[u].size(); i++)
        {
            v = a[u][i].to;
            if(dis[v] > dis[u] + a[u][i].w)
            {
                dis[v] = dis[u] + a[u][i].w;
                q.push(pii(dis[v], v));
            }
        }
    }
}
int main()
{
    int u, v, w;
    while(scanf("%d%d", &n, &m) != EOF)
    {
        if(n == 0 && m == 0) break;
        for(int i = 1; i <= n; i++)
            a[i].clear();
        for(int i = 1; i <= m; i++)
        {
            scanf("%d%d%d", &u, &v, &w);
            a[u].push_back(Edge(v, w));
            a[v].push_back(Edge(u, w));
        }
        int ans = 0;
        for(fib = 2; fib < n; fib++)
        {
            dij(1);
            ans = max(ans, dis[n]);
        }
        if(ans == 0x3f3f3f3f)
            puts("Inf");
        else
            printf("%d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值