【网络流24题】最长 k 可重区间集(费用流)

该博客介绍了如何使用网络流解决最长 k 可重区间集问题。首先离散化区间,然后建立数轴网络图,通过设置不同边的容量和费用,确保最多选取 k 个区间。最后,通过最大费用最大流算法求解,将费用转负后运行费用流算法得出最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接【网络流24题】最长 k 可重区间集

题意:

给定实直线 L L L n n n个开区间组成的集合 I I I,和一个正整数 k k k,试设计一个算法,从开区间集合 I I I中选取出开区间集合 S ⊆ I S\subseteq I SI,使得在实直线 L L L的任何一点 x x x S S S中包含点 x x x的开区间个数不超过 k k k。且 ∑ z ∈ S ∣ z ∣ \displaystyle\sum_{z\in S}|z| zSz达到最大。这样的集合 S S S称为开区间集合 I I I的最长 k k k可重区间集。 ∑ z ∈ S ∣ z ∣ \displaystyle\sum_{z\in S}|z| zSz称为最长 k k k可重区间集的长度。

对于给定的开区间集合 I I I和正整数 k k k,计算开区间集合 S S S的最长 k k k可重区间集的长度。



分析:

读入数据,先离散化,可以得到区间端点均在 1 ∼ m 1\sim m 1m之间

先建立一个数轴,从 1 1 1开始,直到 m m m,连边 i → i + 1 i\rarr i+1 ii+1,容量定为 ∞ \infin ,费用定为 0 0 0

对于给定的开区间 ( L , R ) (L,R) (L,R),连边 L → R L\rarr R LR,容量定为 1 1 1,费用即为长度 R − L R-L RL

对于源点,连边 s → 1 s\rarr 1 s1,容量定为 k k k,费用为 0 0 0
对于汇点,连边 m → t m\rarr t mt,容量为 ∞ \infin ,费用为 0 0 0

这样只有带有费用的 L → R L\rarr R LR连边才会对答案有贡献,可以发现,对于有交集的 x x x个区间,若同时选中(同时有流量通过),那么允许通过的最大流量即为 x x x, 所以只要 s → 1 s\rarr 1 s1连边限流为 k k k,就保证了这是最多 k k k可重。

所以求最大费用最大流即可,将费用转为负,跑一遍费用流。



代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int maxn=1e5+10;
int s=0,t=maxn-1;
int head[maxn],cnt;
struct edge
{
    int w;    //边的流量(残量)
    int c;    //边的每单位花费
    int to;
    int next;
}e[maxn];
void add_edge(int u,int v,int w,int c)
{
    e[cnt].w=w;
    e[cnt].c=c;
    e[cnt].to=v;
    e[cnt].next=head[u];
    head[u]=cnt;
    cnt++;
    e[cnt].w=0;        //有些图是需要建立双向边,则反向边的初始残量不为0
    e[cnt].c=(-1)*c;   //反向边的花费是 -c
    e[cnt].to=u;
    e[cnt].next=head[v];
    head[v]=cnt;
    cnt++;
}
int pre[maxn];    //记录路径
int flow[maxn];   //记录到达该点的最大流量
int last[maxn];   //路径上,以该点结束的边(便于找到v对应的边,更新残量)
bool SPFA()       //SPFA算法,找到总的每单位花费最小的增广路
{
    bool inq[maxn];     //记录是否在队列中
    int cost[maxn];     //记录总的每单位花费
    memset(pre,-1,sizeof(pre));
    memset(inq,false,sizeof(inq));
    memset(cost,0x3f,sizeof(cost));    //赋初值为INF
    queue<int> q;
    q.push(s);
    flow[s]=INF;        //流入源点s最大流量为INF
    inq[s]=true;
    cost[s]=0;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        inq[u]=false;
        for(int i=head[u];i!=-1;i=e[i].next)
        {
            int v=e[i].to;
            if(e[i].w>0&&cost[u]+e[i].c<cost[v])    //可达&&花费更小
            {
                cost[v]=cost[u]+e[i].c;
                pre[v]=u;
                last[v]=i;
                flow[v]=min(flow[u],e[i].w);
                if(!inq[v])       //若v不在队列q中在中,则入列
                {
                    inq[v]=true;
                    q.push(v);
                }
            }
        }
    }
    return pre[t]!=-1;  //pre[t]!=-1说明t可达
}
int max_flow,min_cost;
void min_cost_flow()
{
    max_flow=min_cost=0;
    while(SPFA())
    {
        for(int i=t;i!=s;i=pre[i])     //利用pre数组从t向s搜索
        {
            e[last[i]].w-=flow[t];     //同时更新残量
            e[last[i]^1].w+=flow[t];
            min_cost+=e[last[i]].c*flow[t];   //统计花费,即各边每单位花费*最大流
        }
        max_flow+=flow[t];             //统计最大流量
    }
}
int n,k,L[maxn],R[maxn],X[maxn],m;
void pre_work()
{
    sort(X+1,X+2*n+1);
    m=unique(X+1,X+2*n+1)-(X+1);
    for(int i=1;i<=n;i++)
    {
        L[i]=lower_bound(X+1,X+m+1,L[i])-X;
        R[i]=lower_bound(X+1,X+m+1,R[i])-X;
    }
}
int main()
{
    memset(head,-1,sizeof(head));
    cnt=0;
    scanf("%d %d",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d %d",&L[i],&R[i]);
        if(L[i]>R[i])
            swap(L[i],R[i]);
        X[2*i-1]=L[i];
        X[2*i]=R[i];
    }
    pre_work();
    for(int i=2;i<=m;i++)
        add_edge(i-1,i,INF,0);
    add_edge(s,1,k,0);
    add_edge(m,t,INF,0);
    for(int i=1;i<=n;i++)
        add_edge(L[i],R[i],1,-(X[R[i]]-X[L[i]]));   //费用为原长度的负数
    min_cost_flow();
    printf("%d\n",-min_cost);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值