一、金融理论必修模块
(1)基础金融知识体系
课程名称 | 关键知识点 | 数学工具对接点 |
---|---|---|
金融经济学 | 无套利定价原理 | 线性代数/凸优化 |
固定收益证券分析 | 久期与凸度计算 | 微分方程/数值方法 |
衍生品定价 | Black-Scholes模型推导 | 随机微积分/蒙特卡洛模拟 |
(2)进阶金融模型
-
资产定价理论:CAPM模型与因子分析 → 需矩阵运算能力
-
行为金融学:前景理论量化建模 → 涉及概率分布修正
二、量化技能强化路径
工具掌握优先级表
工具类别 | 推荐掌握程度 | 典型应用场景 | 学习资源建议 |
---|---|---|---|
Python | 精通 | 量化策略回测 | 《Python金融大数据分析》 |
R | 熟练 | 统计套利模型构建 | R for Data Science |
C++ | 基础 | 高频交易系统开发 | 《C++量化交易入门》 |
三、数学金融核心交叉课程
1. 必修高阶数学
-
随机过程(布朗运动/伊藤引理)
-
时间序列分析(ARIMA/GARCH模型)
-
优化理论(线性规划/动态规划)
2. 金融工程实践课
-
金融数据库应用(Wind/CRSP)
-
风险管理软件(RiskMetrics)
-
量化平台实操(JoinQuant/优矿)
四、职业资质补充建议
对于目标岗位的证书适配性分析:
证书类型 | 适用方向 | 学习成本 | 数学关联度 |
---|---|---|---|
CDA Level II | 金融数据分析 | 中 | ★★★★☆ |
FRM | 风险管理 | 高 | ★★★★☆ |
CFA一级 | 投资分析 | 高 | ★★★☆☆ |
证书优势
(1)提升数据分析能力
CDA 认证涵盖了数据分析的各个方面,包括数据采集、处理、分析和可视化等。通过 CDA 认证的学习和考试,可以系统地掌握数据分析的知识和技能,提升自己在数据分析方面的能力。
(2)增强就业竞争力
在就业市场上,拥有 CDA 认证的候选人往往更受青睐。CDA 认证可以证明他们具备扎实的数据分析能力和专业素养,增强他们在人工智能、大数据分析、金融等领域的就业竞争力。
(3)拓展职业发展空间
CDA 认证是数据分析师职业发展的重要里程碑,通过 CDA 认证可以为职业发展打开更多的可能性。例如,可以在数据分析、数据科学等领域担任更高级别的职位,拓展自己的职业发展空间。
五、学习路线图
-
基础阶段(1-2学期)
-
完成金融学+概率统计双基础
-
掌握Python数据处理基础
-
-
提升阶段(3-4学期)
-
主攻随机过程+计量经济学
-
参与量化策略竞赛(如WQU)
-
-
实战阶段(5-6学期)
-
实习聚焦券商金工/量化私募
-
完成CFA/FRM一级或CDA二级
-
(数据补充:2023年QuantNet排名显示,TOP10量化金融项目课程中随机过程与Python编程为100%必修)
学习提示:数学金融方向需保持每周10小时以上的coding训练,建议通过Tushare获取免费金融数据练手
Q:您在量化金融学习过程中遇到的最大障碍是什么?欢迎分享您的解决经验。