Trie树

1. Trie树是什么?

Trie(发音为“try”或“tree”)是一种树形数据结构,专门用于高效处理字符串(或其他序列)集合。它的全称是“retrieval tree”(检索树),核心思想是将字符串的字符逐个分解存储在树的节点中,共享相同前缀的字符串会复用相同的路径。

1.1 Trie树的核心特点

  • 前缀共享:相同前缀的字符串共享相同的路径,从而节省存储空间。
  • 高效查询:查找、插入等操作的时间复杂度通常只与字符串长度相关,与集合大小无关。
  • 多用途:支持前缀查询、模糊匹配、自动补全等功能。
  • 有序性:可以按字典序遍历所有字符串。

1.2 Trie树的典型应用场景

  • 搜索引擎的自动补全(如Google搜索框)。
  • 拼写检查器(如Word的拼写建议)。
  • IP路由表查找。
  • 字典实现(如电话簿)。
  • 字符串匹配算法(如KMP或AC自动机的预处理)。

2. Trie树的结构

Trie树是一棵多叉树,每个节点可能有多个子节点,对应于可能的字符(通常是字母、数字等)。以下是Trie树的结构细节:

2.1 节点结构

一个典型的Trie节点包含以下内容:

  • 子节点指针:指向所有可能字符的子节点。通常用数组、哈希表或链表实现。
  • 标记:表示该节点是否为一个完整字符串的结束点(通常用布尔值isEnd或计数器count)。
  • 可选信息:如频率、前缀计数等(视应用而定)。

例如,对于字母表大小为26(仅小写字母)的Trie,节点可能定义为:

class TrieNode:
    def __init__(self):
        self.children = [None] * 26  # 存储26个字母的子节点
        self.isEnd = False  # 标记是否为单词结尾

2.2 Trie树的根节点

  • Trie树有一个空根节点,不存储任何字符,仅作为树的起点。
  • 从根节点开始,每条路径表示一个字符串的前缀。

2.3 示例

假设插入单词catcarcap,Trie树的结构如下:

       (root)
      /  |  \
     c   a   b
    /    |   |
   a     r   e
  / \    |
 t   p   t
  • 路径c->a->t表示cat
  • 路径c->a->r表示car
  • 路径c->a->p表示cap
  • 节点trpisEndTrue,表示它们是单词的结尾。

3. Trie树的基本操作

Trie树支持以下核心操作:插入、查找、删除和前缀查询。下面逐一讲解,并提供伪代码和Python实现。

3.1 插入(Insert)

插入一个字符串到Trie树的过程是将字符串的每个字符逐个添加到树中,并确保共享前缀。

步骤:
  1. 从根节点开始,遍历字符串的每个字符。
  2. 对于每个字符:
    • 如果当前节点的对应子节点不存在,创建新节点。
    • 移动到该子节点。
  3. 在字符串最后一个字符的节点标记isEnd = True.
伪代码:
function insert(root, word):
    node = root
    for char in word:
        if node.children[char] is null:
            node.children[char] = new TrieNode()
        node = node.children[char]
    node.isEnd = true
时间复杂度:
  • O(m)O(m)O(m), 其中mmm是字符串长度。
示例代码:
class TrieNode:
    def __init__(self):
        self.children = {
   
   }
        self.isEnd = False

class Trie:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.isEnd = True

3.2 查找(Search)

查找一个字符串是否存在于Trie树中。

步骤:
  1. 从根节点开始,遍历字符串的每个字符。
  2. 对于每个字符:
    • 如果对应子节点不存在,返回False
    • 移动到该子节点。
  3. 检查最后一个节点的isEnd是否为True.
伪代码:
function search(root, word):
    node = root
    for char in word:
        if node.children[char] is null:
            return false
        node = node.children[char]
    return node.isEnd
时间复杂度:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值