离散数学——2 命题逻辑、谓词逻辑

第一部分:命题逻辑 (Propositional Logic)

一、 等值演算 (Equivalence Calculus)

等值演算是通过使用已知的等值公式来推导出新的等值公式或简化命题公式的过程。

  • 核心定理 (置换规则)

    • 内容: 如果两个命题公式 AAABBB 是等值的 (记作 A⇔BA \Leftrightarrow BAB),那么在一个更复杂的命题公式 Φ(A)\Phi(A)Φ(A) 中,将任意出现的 AAA 替换为 BBB,得到的新公式 Φ(B)\Phi(B)Φ(B) 与原公式是等值的,即 Φ(A)⇔Φ(B)\Phi(A) \Leftrightarrow \Phi(B)Φ(A)Φ(B)
    • 意义: 这个定理是进行等值推演的理论基础,允许我们“代入”和“替换”。
  • 常用重要等值式 (必须记忆)

    • 蕴涵等值式: p→q⇔¬p∨qp \rightarrow q \Leftrightarrow \neg p \vee qpq¬pq
    • 德摩根定律: ¬(p∧q)⇔¬p∨¬q\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q¬(pq)¬p¬q¬(p∨q)⇔¬p∧¬q\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q¬(pq)¬p¬q
    • 分配律: p∧(q∨r)⇔(p∧q)∨(p∧r)p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)p(qr)(pq)(pr)p∨(q∧r)⇔(p∨q)∧(p∨r)p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)p(qr)(pq)(pr)
    • 结合律: (p∨q)∨r⇔p∨(q∨r)(p \vee q) \vee r \Leftrightarrow p \vee (q \vee r)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值