第一部分:命题逻辑 (Propositional Logic)
一、 等值演算 (Equivalence Calculus)
等值演算是通过使用已知的等值公式来推导出新的等值公式或简化命题公式的过程。
-
核心定理 (置换规则)
- 内容: 如果两个命题公式 AAA 和 BBB 是等值的 (记作 A⇔BA \Leftrightarrow BA⇔B),那么在一个更复杂的命题公式 Φ(A)\Phi(A)Φ(A) 中,将任意出现的 AAA 替换为 BBB,得到的新公式 Φ(B)\Phi(B)Φ(B) 与原公式是等值的,即 Φ(A)⇔Φ(B)\Phi(A) \Leftrightarrow \Phi(B)Φ(A)⇔Φ(B)。
- 意义: 这个定理是进行等值推演的理论基础,允许我们“代入”和“替换”。
-
常用重要等值式 (必须记忆)
- 蕴涵等值式: p→q⇔¬p∨qp \rightarrow q \Leftrightarrow \neg p \vee qp→q⇔¬p∨q
- 德摩根定律: ¬(p∧q)⇔¬p∨¬q\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q¬(p∧q)⇔¬p∨¬q 和 ¬(p∨q)⇔¬p∧¬q\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q¬(p∨q)⇔¬p∧¬q
- 分配律: p∧(q∨r)⇔(p∧q)∨(p∧r)p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)p∧(q∨r)⇔(p∧q)∨(p∧r) 和 p∨(q∧r)⇔(p∨q)∧(p∨r)p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)p∨(q∧r)⇔(p∨q)∧(p∨r)
- 结合律: (p∨q)∨r⇔p∨(q∨r)(p \vee q) \vee r \Leftrightarrow p \vee (q \vee r)