离散数学——6 图论

第一部分:图的基本定义与类型

1. 核心预备知识

  • 多重集 (Multiset): 与集合不同,多重集是允许元素重复出现的集合。例如,作为多重集 {a, a, b, c, c}{a, b, c} 是不同的。
  • 无序积 (Unordered Product): 两个集合A和B的无序积记作 A&B,是由形如 {a,b} 的无序对组成的集合,其中 a ∈ Ab ∈ B

2. 无向图 (Undirected Graph)

  • 定义: 一个无向图 G 是一个二元组 <V, E>,其中:
    • V 是一个非空的有限集合,称为 顶点集,其元素称为 顶点结点
    • E 是无序积 V&V 的一个多重子集,称为 边集,其元素是 无向边 或简称 。一条边 (u, v) 表示顶点 uv 之间有连接。
  • 例子: 若 V = {v₁, v₂, v₃, v₄, v₅}E = {(v₁, v₂), (v₂, v₂), (v₂, v₃), (v₁, v₃), (v₁, v₃), (v₁, v₄)},这就构成了一个无向图。其中 (v₂, v₂) 是一条 (v₁, v₃) 出现了两次,是 平行边

3. 有向图 (Directed Graph / Digraph)

  • 定义: 一个有向图 D 是一个二元组 <V, E>,其中:
    • V 是一个非空的有限集合,即 顶点集
    • E 是笛卡尔积 V × V 的一个多重子集,称为 边集,其元素是 有向边(或称 )。一条有向边 <u, v> 表示一个从 u 指向 v 的连接。
  • 例子: 若 V = {v₁, v₂, v₃, v₄, v₅}E = {<v₁, v₁>, <v₃, v₂>, <v₃, v₂>, <v₃, v₄>, <v₂, v₄>, <v₂, v₄>, <v₄, v₅>, <v₅, v₄>, <v₁, v₂>},这就构成了一个有向图。

4. 几种特殊的图

  • n阶图: 含有 n 个顶点的图。
  • 零图 (Null Graph): 边集为空的图(即没有边)。
  • 平凡图 (Trivial Graph): 只有一个顶点且没有边的图(即1阶零图)。
  • 简单图 (Simple Graph): 既没有 也没有 平行边 的图。
  • 多重图 (Multigraph): 含有平行边的图。
  • 完全图 (Complete Graph):
    • 无向完全图 (KnK_nKn): n 阶无向简单图中,任意两个不同的顶点之间都恰好有一条边相连。
    • 有向完全图: n 阶有向简单图中,任意两个不同的顶点 uv 之间,既有边 <u, v>,又有边 <v, u>

第二部分:顶点、边、度数与连通性

1. 顶点与边的关系

  • 关联 (Incidence): 如果顶点 u 是一条边 e 的端点,则称 ue 关联
    • 在无向图中,若 e = (u, v)uv 都是 e端点。若 u=v,则 e 是一个 ,它与顶点 u 的关联次数为2。若 u≠v,关联次数为1。
    • 在有向图中,若 e = <u, v>ue始点ve终点
  • 相邻 (Adjacency):
    • 顶点相邻: 若两个顶点 uv 之间存在一条边,则称 uv 相邻。在有向图中,若存在边 <u, v>,则称 u 邻接到 v
    • 边相邻: 若两条边至少有一个公共端点,则称它们 相邻
  • 孤立点 (Isolated Vertex): 没有任何边与其关联的顶点。

2. 图的度数 (Degree)

  • 无向图:
    • 度数 (d(v)d(v)d(v)): 与顶点 v 关联的边的数目,一个环计算两次度数。
    • 悬挂顶点: 度数为1的顶点。其关联的边称为 悬挂边
    • 最大度 Δ(G)\Delta(G)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值