第一部分:平面图 (Planar Graphs)
1. 基本定义
- 极大平面图 (Maximal Planar Graph): 一个简单平面图,如果在任意两个不相邻的顶点间添加一条边,都会导致该图成为非平面图,那么这个图就称为极大平面图。
- 极小非平面图 (Minimal Nonplanar Graph): 一个非平面图,如果移除其中任意一条边后,得到的图都是平面图,那么这个图就称为极小非平面图。
2. 极大平面图的性质
- 定理: 一个n阶(n≥3)的简单平面图是极大平面图的充要条件是:它是连通的,并且每个面的次数都为3。
3. 欧拉公式 (Euler’s Formula)
对于任意连通的平面图,顶点数(n)、边数(m)和面数(r)之间满足以下关系:
n−m+r=2n - m + r = 2n−m+r=2
- 推论: 如果一个平面图有 p (p≥2) 个连通分支,则其顶点数(n)、边数(m)和面数(r)满足:
n−m+r=p+1n - m + r = p + 1n−m+r=p+1
4. 平面图的边数限制
-
定理: 如果一个连通平面图的每个面的次数至少为 l (l≥3),那么其边数(m)和顶点数(n)满足:
m≤ll−2(n−2)m \le \frac{l}{l-2}(n-2)m≤