目录
1. 二叉搜索树
1.1 二叉搜索树的概念
二叉搜索树又被称为二叉排序树,它可能是一个空树,也可能是满足一下特征的二叉树:
- 若它的左子树不为空,则左子树的所有节点上的值都小于根节点上的值
- 若它的右子树不为空,则右子树的所有节点上的值都大于根节点上的值
- 它的左右子树也满足上述特征
这就是一个标准的二叉搜索树
1.2 二叉搜索树的操作
1.2.1 二叉树的查找
实现步骤:
- 从根节点出发开始查找,如果当前值比目标值要大,则在右子树上进行查找
- 如果当前值比目标值要小,则在左子树上进行查找
- 如果当前值等于目标值,则返回true
- 如果当走到了空节点仍没有找到,则返回false
让我们来看看代码是如何实现的:
1. 非递归写法
bool Find(const K& val)
{
//从root开始查找
Node* cur = root;
//如果当cur为空,仍没有找到则返回false
while (cur)
{
//比当前值小则在左子树查找
if (cur->val > val)
{
cur = cur->left;
}
//比当前值大则在右子树查找
else if (cur->val < val)
{
cur = cur->right;
}
//相等则直接返回true
else
{
return true;
}
}
return false;
}
2. 递归写法
因为在类内不能直接传参,因此封装了一层函数
bool FindR(const K&val)
{
return _FindR(root,val);
}
bool _FindR(Node*& root, const K& val)
{