HCP(human connectome project)数据集解读2

3.目录

MNINonLinear

fsaverage_LR59k

ROIS

T1w_restore.1.60.nii.gz

T2w_restore.1.60.nii.gz

release-notes

T1w

总结


个人数据集下载步骤:

1. 因为数据集比较大,所以要先下载Aspera插件才能进行下载(安装Aspera插件若非美国用户要把美式英语添加到语言列表),如果是要用大量数据集进行训练,可以直接在云端访问: 数据集已经上传在Amazon Simple Storage Service (S3) bucket中。

2. 设置好Aspera的下载位置之后登录ConnectomeDB,

选择感兴趣的数据集,例如1200这个数据集,点击右上角:

就可以选择类别,例如选择的是3TMRI数据集:

之后加入下载队列即可下载。

本文下载的是7TMRI的结构化处理数据集,但是得到的文件还是3TMRI的(可能是官方的问题吧)

解压文件夹之后有两类文件,一类是压缩包,命名规则是“编号 + _3T_Structural_1.6mm_preproc.zip”,代表不同被试者的高分辨率预处理包,

字段 含义
SubjectID 被试编号(如 100610、102311)
3T 数据是在 3T 磁共振设备上采集的(不是 7T)
Structural 结构像(T1w、T2w)
1.6mm 空间分辨率为 1.6 mm 各向同性
preproc 已完成 HCP 标准预处理(去噪、偏差场校正、颅骨剥离、配准等)

另一类是md5文件,用来验证下载的完整性,

例:在终端输入:md5sum -c 995174_3T_Structural_1.6mm_preproc.zip.md5,输出ok表示文件完整。

解压其中一个压缩包,得到:

一共有三个包,分别是原始空间的加权结构像和配准到标准空间后的结构像,以及说明文件。

名称 作用
T1w/ 被试 995174 的 原始空间 T1 加权结构像(已做颅骨剥离、偏差场校
### HCP 数据集的下载与使用 HCPHuman Connectome Project数据集是一个公开可用的大规模神经科学数据库,旨在研究人的功能和结构连接性[^1]。该数据集提供了丰富的多模态成像数据,包括静息状态功能磁共振成像(fMRI)、任务 fMRI 和扩散张量成像(DTI)。这些数据可以用于分析网络、认知功能以及疾病模型。 #### 下载 HCP 数据集 为了获取 HCP 数据集,通常可以通过官方网站或其他授权平台访问 S1200 或其他版本的数据集合[^2]。以下是几个常见的方法: 1. **通过官方渠道** 访问 Human Connectome Project 的官网并注册账户以获得权限。S1200 是一个常用的子集,包含了 1200 名参与者的高质量扫描数据。 2. **利用脚本加载器** 提供了一个 Jupyter Notebook 脚本来简化 HCP 数据集的加载过程。此脚本位于 GitHub 上 Neuromatch Academy 的课程内容仓库中,并可通过 nbviewer 在线查看。 ```python import numpy as np from nilearn import datasets hcp_data = datasets.fetch_hcp_rest(n_subjects=1, data_dir=None, url=None) print(hcp_data.description) ``` 上述代码片段展示了如何使用 Nilearn 库来快速加载部分 HCP 静息态数据。Nilearn 是 Python 中处理神经影像数据的一个强大工具包。 #### 使用 PyTorch 处理 HCP 数据 如果计划采用深度学习框架如 PyTorch 来训练模型,则需要确认 GPU 是否正常工作以便加速计算性能。下面是一段验证 CUDA 可用性的简单代码示例: ```python import torch ngpu = 1 device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") if device.type == 'cuda': print(f'Using {torch.cuda.get_device_name(0)}') else: print('CUDA not available') example_tensor = torch.rand((3, 3)).to(device) print(example_tensor) ``` 这段程序会检测当前环境是否支持 NVIDIA 显卡运算,并打印随机生成矩阵作为测试输出。 ### 总结 综上所述,在信息技术领域内应用 HCP 数据集涉及多个方面的工作流程,从原始数据采集到预处理再到建模分析都需要遵循严格的规范和技术标准。无论是借助传统统计学还是现代机器学习技术,都可以挖掘出关于人复杂机制的新见解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值