B树详解及其C语言实现

目录

一、B树的基本原理

二、B树操作过程图形化演示

三、B树的应用场景

四、C语言实现B树及示例

 五、代码执行结果说明

六、应用实例:文件系统目录索引

七、总结


一、B树的基本原理

B树(B-Tree) 是一种自平衡的树数据结构,专为高效处理磁盘或数据库中的大量数据而设计。它的核心特性是每个节点可以包含多个键和子节点指针,通过控制每个节点的最小/最大键数量,确保树的高度始终为对数级别。

B树的定义(以m阶B树为例)

     B树是一种多路搜索树,也被称为平衡多路查找树。与二叉搜索树不同,B树的每个节点可以拥有多个子节点和键值。B树的每个节点包含键值集合、子节点指针集合和一个平衡因子。键值集合按照从小到大的顺序排列,子节点指针集合按照左子节点、右子节点的顺序排列。平衡因子用于衡量节点的平衡性。

  1. 节点容量:B树的阶(Order)或分支因子(Branch Factor)通常用字母m表示,它定义了节点可以拥有的最大子节点数(即m个子节点)。因此,一个节点最多可以有m-1个键值。最少包含 m/2−1 个键(根节点除外)
  2. 子节点数:每个非叶子节点最多有 m个子节点,最少有 m/2个子节点
  3. 有序性:所有键在节点内按升序排列

  4. 平衡性

    • B树通过保持树的平衡性,确保所有叶子节点都在同一层,从而实现了高效的查找、插入和删除操作。
    • 这种平衡性确保了所有查找、插入和删除操作的时间复杂度都是O(log n),其中n是树中元素的数量。
  5. 操作原理

    • 查找操作:从根节点开始,通过比较要查找的键与节点中的键,决定是继续在左子树还是右子树中搜索,直到找到目标键或到达叶子节点为止。
    • 插入操作:找到合适的叶子节点,然后将新键插入该节点。如果插入后节点中的键的数量超过了m-1,则节点会分裂成两个节点,并将中间的键提升到父节点。如果父节点也满了,则继续向上分裂,直到根节点。如果根节点也分裂,则创建一个新的根节点,并包含分裂出的中间键。
    • 删除操作:找到包含要删除键的节点,并从节点中移除该键。如果删除后节点中的键的数量少于要求的最小数量(⌈m/2⌉-1),则需要重新分配或合并节点。重新分配通常是从兄弟节点借键,合并则是将当前节点与兄弟节点合并,并可能将父节点中的键下移。

二、B树操作过程图形化演示

示例:构建一个3阶B树(每个节点最多2个键,3个子节点)

插入序列:[10, 20, 5, 6, 12, 30, 7, 17]

1. 插入10(根节点):
[10]

2. 插入20(直接填充根节点):
[10, 20]

3. 插入5(根节点已满,触发分裂):
      [10]
     /   \
  [5]   [20]

4. 插入6(插入到左子节点):
      [10]
     /   \
  [5,6] [20]

5. 插入1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

W说编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值