引言
Transformer 模型是人工智能领域的突破性进展之一,自 2017 年由 Vaswani 等人提出以来,在自然语言处理(NLP)及计算机视觉等多个领域取得了广泛应用。其核心特性是基于自注意力机制(Self-Attention)和完全并行的架构,克服了传统 RNN(循环神经网络)在长距离依赖问题上的局限性。本文将详细介绍 Transformer 的基本原理、数学公式以及实际应用。
1. Transformer 的架构概述
Transformer 采用 编码器-解码器(Encoder-Decoder) 结构:
- 编码器(Encoder):接收输入序列并将其转换为上下文表示。
- 解码器(Decoder):利用编码器的输出生成目标序列。
一个典型的 Transformer 由多个 编码器层 和 解码器层 组成,每层包含如下两个核心组件:
- 多头自注意力机制(Multi-Head Self-Attention)
- 前馈神经网络(Feed-Forward Neural Network, FFN)
此外,Transformer 采用了 残差连接(Residual Connection) 和 层归一化(Layer Normalization) 以稳定梯度传播。
2. 自注意力机制(Self-Attention)
自注意力机制是 Transformer 的核心,它允许模型在处理序列时,不依赖于固定的顺序,而是计算输入序列中每个单词与其他单词之间的关系。其核心思想是:
2.1 计算注意力权重
给定输入序列 X∈Rn×dX \in \mathbb{R}^{n \times d}X∈Rn×d,其中 nnn 是序列长度,ddd 是嵌入维度,我们首先通过三个可训练的矩阵将 XXX 线性变换为 查询(Query, Q)、键(Key, K) 和 值(Value, V):
Q=XWQ,K=XWK,V=XWVQ = XW_Q, \quad K = XW_K, \quad V = XW_VQ=XWQ,K=XWK,V=XWV
其中,WQ,WK,WV∈Rd×dkW_Q, W_K, W_V \in \mathbb{R}^{d \times d_k}WQ,WK,WV∈Rd×dk 是学习参数,dkd_kdk 是注意力头的维度。
2.2 计算注意力分数
使用缩放点积注意力(Scaled Dot-Product Attention)计算每个查询 QQQ 对键 KKK 的注意力分数:
Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) VAttention(Q,K,V)=softmax(dkQKT)V
其中,dk\sqrt{d_k}dk 是缩放因子,防止内积值过大影响梯度更新。
2.3 多头注意力机制(Multi-Head Attention)
单一注意力头可能无法捕捉到足够的信息,因此 Transformer 使用多头注意力机制:
MultiHead(Q,K,V)=Concat(head1,...,headh)WO\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h) W_OMultiHead(Q,K,V)=Concat(head1,...,headh)WO
其中,每个头 iii 计算独立的 Qi,Ki,ViQ_i, K_i, V_iQi,Ki,Vi,并通过独立的缩放点积注意力计算结果。
3. 位置编码(Positional Encoding)
由于 Transformer 没有内置的顺序信息,它采用 位置编码(Positional Encoding) 添加位置信息:
PE(pos,2i)=sin(pos100002i/d),PE(pos,2i+1)=cos(pos100002i/d)PE_{(pos, 2i)} = \sin \left( \frac{pos}{10000^{2i/d}} \right), \quad PE_{(pos, 2i+1)} = \cos \left( \frac{pos}{10000^{2i/d}} \right)PE(pos,2i)=sin(100002i/dpos),PE(pos,2i+1)=cos(100002i/dpos)
其中,pospospos 是单词位置,iii 是维度索引。这种方法允许模型在不同长度的序列上泛化。
4. 前馈神经网络(Feed-Forward Network, FFN)
每个 Transformer 层中还包含一个前馈神经网络:
FFN(x)=max(0,xW1+b1)W2+b2FFN(x) = \max(0, xW_1 + b_1) W_2 + b_2FFN(x)=max(0,xW1+b1)W2+b2
这里使用 ReLU 激活函数 进行非线性变换。
5. 训练和优化
Transformer 模型使用 交叉熵损失(Cross-Entropy Loss) 进行训练,并采用 Adam 优化器(带有学习率调度和梯度裁剪)提升稳定性。此外,论文引入了 标签平滑(Label Smoothing) 以减少过拟合。
6. Transformer 的应用
Transformer 模型不仅在 NLP 领域取得了巨大成功,也被广泛应用于计算机视觉等任务。
6.1 NLP 任务
- 机器翻译(Machine Translation):如 Google 翻译使用的 T5、mBART。
- 文本生成(Text Generation):GPT 系列模型能够生成高质量的文本。
- 文本摘要(Summarization):BART 以及 T5 在文本摘要任务上表现优异。
- 情感分析(Sentiment Analysis):BERT 被用于文本分类和情感分析。
6.2 计算机视觉
- Vision Transformer(ViT):将图像划分为 Patch,并用 Transformer 处理。
- DETR(Detection Transformer):用于目标检测。
- Image GPT:利用 Transformer 生成图像。
6.3 其他领域
- 蛋白质折叠预测(如 AlphaFold)
- 金融时间序列预测
- 自动代码补全(如 Codex)
7. 未来发展方向
- 降低计算复杂度:如 Linformer、Performer 通过稀疏注意力减少计算开销。
- 更高效的训练方法:如 FlashAttention 提高训练速度。
- 多模态 Transformer:如 CLIP 结合文本和图像理解。
8. 结论
Transformer 以其强大的并行计算能力和高效的特征提取能力,已成为当前 AI 领域的主流架构。无论是在 NLP 还是计算机视觉任务中,它都展现出了卓越的性能。随着研究的深入,Transformer 仍将在未来 AI 发展中扮演重要角色。