题目描述:
假设你想要给孩子们分发小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
注意:你可以假设胃口值为正。
一个小朋友最多只能拥有一块饼干。
示例 1:
输入: [1,2,3], [1,1]
输出: 1
解释: 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:
输入: [1,2], [1,2,3]
输出: 2
解释: 你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
思路:(贪心)–时间O(nlogn),空间O(1)
为了让更多的饼干分给孩子,胃口小的孩子尽量分小的饼干,这样胃口大的孩子才能分到饼干的可能。符合贪心算法的思想。
- 排序g数组和s数组。–O(nlogn)
- 扫描两个数组,如果饼干足够(s[cookie]>=g[child])就让child++。–O(n)
代码:
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(),g.end());
sort(s.begin(),s.end());
int child=0,cookie=0;
while(cookie<s.size() && child<g.size()){
if(s[cookie]>=g[child]){
child++;
}
cookie++;
}
return child;
}
};