关于multi-GPU训练的终结篇——以NCF为例

本文详细记录了在多GPU环境下训练NCF模型遇到的问题与解决过程,包括CUDA版本、数据集、模型迁移等问题,以及如何从单GPU过渡到多GPU训练。通过调整模型参数和数据处理,最终实现NCF模型的多GPU训练,但负采样机制仍有待深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hi各位大佬关注我很久了都会发现我有很多悬而未决的坑,自己挖好的,现在是时候解决了。关于Multi-GPU的相关探索博文,如下:为啥不会并行?为啥子那么难改呢?卧槽。目前我也一直在搞这个破事,主要是严重限制生产力的发展了。为了应对日活千万的数据量,必须有Multi-GPU,这个月搞不定,卷铺盖滚蛋吧。

For Recommendation in Deep learning QQ Group 102948747

For Visual in deep learning QQ Group 629530787

I'm here waiting for you

不接受这个网页的私聊/私信!!!

现在一直在进行的值官方给出的一个NCF,这是做推荐的,我原想着直接clone下来就能用,这怎么可能呢?这是不现实的,很多东西总是有坑存在的,因为有坑,才有坑,不然大家就真的copy-paste,还要这么多人搬砖

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值