WGCNA+网药+分子对接+体外实验
提到网络药理学,许多人首先会联想到它在中医药领域的应用,但事实上,这种高效的生物信息学方法在多种研究领域都展示出了广泛的适用性。今天要分享的是一篇发表在《British Journal of Dermatology》(影响因子11.0)的研究文章。该研究创新性地整合了WGCNA、网络药理学和分子对接三大生信分析工具,并结合体内外实验,系统地探究了增生性瘢痕的分子机制。
题目:利用网络药理学发现治疗增生性疤痕的潜在药物
杂志:BRITISH JOURNAL OF DERMATOLOGY
影响因子:IF=11
中科院分区:医学一区
发表时间:2024年5月
PART·1 研究背景
创伤、手术、烧伤和虫咬可能会导致皮肤损伤,并引起称为“增生性”瘢痕的厚而凸起的瘢痕。每年约有1亿发达国家的人受到瘢痕问题的困扰。增生性瘢痕可能会带来美容和功能上的问题,并影响人们的生活质量。大多数治疗方法未能带来满意的效果。进一步研究增生性瘢痕的形成机制,以改善治疗效果是必要的。
PART·2 方法学
加权基因共表达网络分析
来自NCBI基因表达综合数据库(GEO DataSet)的增生性瘢痕转录组数据(系列GSE122891、GSE188952和GSE178562)用于本研究。本研究仅包括人类增生性瘢痕成纤维细胞(HSF)样本(n = 10)和人类正常瘢痕成纤维细胞样本(n = 5)。使用R语言的'Sva'和'Limma'包进行了批次校正。通过R包'WGCNA',计算了模块特征基因、基因显著性(GS)、模块显著性和模块成员关系。结果显示,黑色模块与增生性瘢痕显著正相关,而青色、蓝色、皇家蓝、松石色和浅青色模块则与增生性瘢痕显著负相关。
GO和KEGG富集分析
利用R包'clusterProfiler'、'enrichplot'和'ggplot2'以及DAVID生物信息学数据库,进行基因本体论(GO)和京都基因和基因组百科全书(KEGG)富集分析。
蛋白质-蛋白质相互作用网络分析
从黑色模块中选择了GS最高的150个基因,并从青色、蓝色、皇家蓝、松石色和浅青色模块中选择了另一组GS最高的150个基因。为了构建蛋白质-蛋白质相互作用(PPI)网络,使用了STRING数据库,并将最低交互分数设置为0.7。
利用Connectivity Map数据库进行药物预测
将用于PPI分析的300个基因提交至Connectivity Map(CMAP)数据库(htt