直角坐标方程、参数坐标方程、极坐标方程


一、三种坐标方程形式对比

类型名称方程形式特点应用示例
1直角坐标方程(笛卡尔方程)y=f(x)y = f(x)y=f(x)F(x,y)=0F(x, y) = 0F(x,y)=0直接用 x,yx, yx,y 描述图形如直线:y=2x+1y = 2x + 1y=2x+1
圆:x2+y2=r2x^2 + y^2 = r^2x2+y2=r2
2参数坐标方程{x=f(t)y=g(t)\begin{cases} x = f(t) \\ y = g(t) \end{cases}{x=f(t)y=g(t)用一个“参数” ttt 控制 x,yx, yx,y,表示运动或生成轨迹圆:x=cos⁡t, y=sin⁡tx = \cos t,\ y = \sin tx=cost, y=sintt∈[0,2π]t \in [0, 2\pi]t[0,2π]
3极坐标方程r=f(θ)r = f(\theta)r=f(θ)(r,θ)(r, \theta)(r,θ)用“极径”和“极角”表示位置,常用于对称、旋转图形圆:r=2cos⁡θr = 2 \cos \thetar=2cosθ
螺旋线:r=aθr = a\thetar=aθ

二、符号含义:tttrrrθ\thetaθ

符号中文名所在体系几何意义范围示例
ttt参数变量参数方程控制图形中点的位置变化(常类比“时间”)实数区间,如 t∈[0,2π]t \in [0, 2\pi]t[0,2π]圆:x=cos⁡t, y=sin⁡tx = \cos t,\ y = \sin tx=cost, y=sint
rrr极径极坐标点到原点的距离r≥0r \ge 0r0(可允许负表示反方向)r=1r = 1r=1:单位圆
θ\thetaθ极角极坐标点与极轴的夹角(从 xxx 轴正向旋转)通常 θ∈[0,2π]\theta \in [0, 2\pi]θ[0,2π],也可扩展r=2cos⁡θr = 2\cos\thetar=2cosθ:圆

三、坐标转换关系

极坐标 ↔ 直角坐标

从极坐标转到直角坐标:

x=rcos⁡θ,y=rsin⁡θ x = r \cos \theta,\quad y = r \sin \theta x=rcosθ,y=rsinθ

从直角坐标转到极坐标:

r=x2+y2,θ=tan⁡−1(yx) r = \sqrt{x^2 + y^2},\quad \theta = \tan^{-1}\left(\frac{y}{x}\right) r=x2+y2,θ=tan1(xy)


四、应用说明

  • 直角坐标系适合表示大多数代数图形,计算直观。
  • 参数方程适合描述随时间变化的轨迹,如动画、运动路径。
  • 极坐标方程适合表示具有对称性旋转结构的图形,如玫瑰线、螺旋线、圆等。

如你需要图示辅助理解,或希望我将这部分整理为表格图片或PDF,欢迎告诉我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值