一、三种坐标方程形式对比
类型 | 名称 | 方程形式 | 特点 | 应用示例 |
---|---|---|---|---|
1 | 直角坐标方程(笛卡尔方程) | y=f(x)y = f(x)y=f(x) 或 F(x,y)=0F(x, y) = 0F(x,y)=0 | 直接用 x,yx, yx,y 描述图形 | 如直线:y=2x+1y = 2x + 1y=2x+1 圆:x2+y2=r2x^2 + y^2 = r^2x2+y2=r2 |
2 | 参数坐标方程 | {x=f(t)y=g(t)\begin{cases} x = f(t) \\ y = g(t) \end{cases}{x=f(t)y=g(t) | 用一个“参数” ttt 控制 x,yx, yx,y,表示运动或生成轨迹 | 圆:x=cost, y=sintx = \cos t,\ y = \sin tx=cost, y=sint(t∈[0,2π]t \in [0, 2\pi]t∈[0,2π]) |
3 | 极坐标方程 | r=f(θ)r = f(\theta)r=f(θ) 或 (r,θ)(r, \theta)(r,θ) | 用“极径”和“极角”表示位置,常用于对称、旋转图形 | 圆:r=2cosθr = 2 \cos \thetar=2cosθ 螺旋线:r=aθr = a\thetar=aθ |
二、符号含义:ttt、rrr、θ\thetaθ
符号 | 中文名 | 所在体系 | 几何意义 | 范围 | 示例 |
---|---|---|---|---|---|
ttt | 参数变量 | 参数方程 | 控制图形中点的位置变化(常类比“时间”) | 实数区间,如 t∈[0,2π]t \in [0, 2\pi]t∈[0,2π] | 圆:x=cost, y=sintx = \cos t,\ y = \sin tx=cost, y=sint |
rrr | 极径 | 极坐标 | 点到原点的距离 | r≥0r \ge 0r≥0(可允许负表示反方向) | r=1r = 1r=1:单位圆 |
θ\thetaθ | 极角 | 极坐标 | 点与极轴的夹角(从 xxx 轴正向旋转) | 通常 θ∈[0,2π]\theta \in [0, 2\pi]θ∈[0,2π],也可扩展 | r=2cosθr = 2\cos\thetar=2cosθ:圆 |
三、坐标转换关系
极坐标 ↔ 直角坐标
从极坐标转到直角坐标:
x=rcosθ,y=rsinθ x = r \cos \theta,\quad y = r \sin \theta x=rcosθ,y=rsinθ
从直角坐标转到极坐标:
r=x2+y2,θ=tan−1(yx) r = \sqrt{x^2 + y^2},\quad \theta = \tan^{-1}\left(\frac{y}{x}\right) r=x2+y2,θ=tan−1(xy)
四、应用说明
- 直角坐标系适合表示大多数代数图形,计算直观。
- 参数方程适合描述随时间变化的轨迹,如动画、运动路径。
- 极坐标方程适合表示具有对称性或旋转结构的图形,如玫瑰线、螺旋线、圆等。
如你需要图示辅助理解,或希望我将这部分整理为表格图片或PDF,欢迎告诉我。