有一列nnn个镜子,一个人走到第iii个镜子是快乐的概率是p[i]p[i]p[i],如果他快乐,那么他会走到下一个镜子,如果不快乐他会回到第111个镜子,问他走完nnn面镜子的期望步数.
令f[i]f[i]f[i]为从第iii面镜子走完所有镜子的期望步数
所以f[i]=1+p[i]⋅f[i]+1+(1−p[i])⋅f[1]f[i]=1+p[i]⋅f[i]+1+(1−p[i])⋅f[1]f[i]=1+p[i]⋅f[i]+1+(1−p[i])⋅f[1]
f[1]=1+p[1]⋅f[2]+(1−p[1])⋅f[1]f[1]=1+p[1]⋅f[2]+(1−p[1])⋅f[1]f[1]=1+p[1]⋅f[2]+(1−p[1])⋅f[1]
f[2]=1+p[2]⋅f[3]+(1−p[2])⋅f[1]f[2]=1+p[2]⋅f[3]+(1−p[2])⋅f[1]f[2]=1+p[2]⋅f[3]+(1−p[2])⋅f[1]
………
f[n]=1+p[n]⋅f[n]+1+(1−p[n])⋅f[1]f[n]=1+p[n]⋅f[n]+1+(1−p[n])⋅f[1]f[n]=1+p[n]⋅f[n]+1+(1−p[n])⋅f[1]
所以f[1]=1/(p[1]⋅p[2]⋅…⋅p[n])+1/(p[2]⋅p[3]⋅…⋅p[n])+…+1/(p[n])f[1]=1/(p[1]⋅p[2]⋅…⋅p[n])+1/(p[2]⋅p[3]⋅…⋅p[n])+…+1/(p[n])f[1]=1/(p[1]⋅p[2]⋅…⋅p[n])+1/(p[2]⋅p[3]⋅…⋅p[n])+…+1/(p[n])
线性递推即可
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=200000+10;
const int MOD=998244353;
int p[maxn];
inline int inv(int x){
int r=1,t=x,k=MOD-2;
while(k){
if(k&1)
r=1ll*r*t%MOD;
t=1ll*t*t%MOD;
k>>=1;
}
return r;
}
int main(){
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&p[i]);
p[i]=1ll*p[i]*inv(100)%MOD;
}
int a=1,b=0;
for(int i=n;i>=1;i--){
a=1ll*a*inv(p[i])%MOD;
b=(b+a)%MOD;
}
printf("%d\n",b);
return 0;
}