马尔可夫链

接下来会发生什么只取决于当前的状况。

性质:马尔可夫链是一种随机过程,是"无记忆"的。未来行动的概率不依赖于导致当前状态的前序步骤。


问题1:一个从 A 开始的过程在移动 2 次后出现在 B 的概率是多少?

解法1:留在A的概率:0.3*0.3+0.7*0.8=0.65,因为只有两个状态,所以在B的概率是1-0.65=0.35。 

解法2:留在B的概率:0.3*0.7+0.7*0.2=0.35

在这个问题中,我们只知道前一个状态(从A开始),然后就能知道移动一次在B的概率和移动两次在B的概率。要确定当前状态的概率分布,只需要知道前一个状态。


现在我们把这个问题变成矩阵的问题。

转移矩阵的定义:

A2B2
A10.30.7
B10.80.2

记录1到2的概率。其一步转移矩阵为:

P=\begin{pmatrix} 0.3 & 0.7\\ 0.8 & 0.2 \end{pmatrix}

问题2:对于下图所描述的时间无关马尔可夫链,其两步转移矩阵是什么?

写出一步转移矩阵:

P=\begin{pmatrix} 0.3 & 0.7\\ 0.9 & 0.1 \end{pmatrix}

两步转移矩阵:

P^2=\begin{pmatrix} 0.3 & 0.7\\ 0.9 & 0.1 \end{pmatrix}*\begin{pmatrix} 0.3 & 0.7\\ 0.9 & 0.1 \end{pmatrix}=\begin{pmatrix} 0.3*0.3+0.7*0.9 & 0.3*0.7+0.7*0.1\\ 0.9*0.3+0.1*0.9 & 0.1*0.1+0.9*0.7 \end{pmatrix}=\begin{pmatrix} 0.72 & 0.28\\ 0.36 & 0.64 \end{pmatrix}

参考文献:

[1] https://en.wikipedia.org/wiki/Markov_chain

[2] Markov Chains | Brilliant Math & Science Wiki

[3] Markov Chains explained visually

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值