接下来会发生什么只取决于当前的状况。
性质:马尔可夫链是一种随机过程,是"无记忆"的。未来行动的概率不依赖于导致当前状态的前序步骤。
问题1:一个从 A 开始的过程在移动 2 次后出现在 B 的概率是多少?
解法1:留在A的概率:,因为只有两个状态,所以在B的概率是
。
解法2:留在B的概率:。
在这个问题中,我们只知道前一个状态(从A开始),然后就能知道移动一次在B的概率和移动两次在B的概率。要确定当前状态的概率分布,只需要知道前一个状态。
现在我们把这个问题变成矩阵的问题。
转移矩阵的定义:
A2 | B2 | |
A1 | 0.3 | 0.7 |
B1 | 0.8 | 0.2 |
记录1到2的概率。其一步转移矩阵为:
问题2:对于下图所描述的时间无关马尔可夫链,其两步转移矩阵是什么?
写出一步转移矩阵:
两步转移矩阵:
参考文献:
[1] https://en.wikipedia.org/wiki/Markov_chain