图片集扩容法则——python 图像批量增噪(加噪)算法 数据扩充

在图像识别项目中,针对稀缺图片资源,采用图像加噪作为数据扩充手段。除了加噪,还包括旋转和左右翻转等方法。这种方法能够有效增加图像数据集的多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这次在做图像识别的项目中,由于部分选项的图片较为稀缺,所以采用了一些方法来扩容图片,图片加噪便是其中之一
当然也可以使用旋转,左右翻转的方式来进行扩容(上下翻转好像不行,未验证
这些都是不错的手段来对图片数据进行扩容

import cv2
import os
import numpy as np
import glob

# 文件夹自己建一下
# 这个函数对于文件名字有一定的要求,懒得改了,如果报错了没有shape属性的错,可以试试换个文件图片名字
# 如果后续有大佬可以试试

# 定义参数
loadPath = './img/'
savePath = './saltImage/'
proname = "Rose" # 图片前置名
rate = 0.004

# 加噪函数
def saltpepper(img, n):
    m = int((img.shape[0] * img.shape[1]) * n)
    for a 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值