蓝桥杯 ADV-319 VIP试题 哈密尔顿回路(试题解析)

探讨了在有向图中寻找哈密尔顿回路的算法实现,通过从每个顶点开始进行广度优先搜索(BFS),并检查是否能访问到所有节点,最终输出一条哈密尔顿回路或“NoAnswer”。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试题 算法提高 哈密尔顿回路

提交此题   评测记录  

资源限制

时间限制:2.0s   内存限制:256.0MB

问题描述

  给出一个有向图,输出这个图的一个哈密尔顿回路。

输入格式

  输入的第一行包含两个整数n, m,分别表示图的点数和边数。

  接下来m行,每行包含两个整数,表示一条边的起点和终点。

输出格式

  输出一行,包含一个n个整数,表示一条哈密尔顿回路。如果没有回路,输出“No Answer””。

样例输入

3 3

1 2

2 3

3 1

样例输出

1 2 3

数据规模和约定

  1<=n<=20,图中没有重边。

解题思路:从每个顶点开始BFS遍历,若所有节点都被访问过,则跳出循环,输出路径。然而,BFS访问的节点次序具有不确定性,只跑了42分。算法还不够精确。。。未完待续。。。

代码如下:

#include <iostream>
#include <vector>
#include <string.h>
#include <queue>
#include <vector>

using namespace std;

vector<vector<int> >    G(22);
int n,m;
int vis[22];
int pred[22];

void Read(){
    cin>>n>>m;
    for(int i=1;i<=m;i++){
        int s,e;
        cin>>s>>e;
        G[s].push_back(e);
    }
    
}

void init(){
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++){
        pred[i]=i;
    }
}

int BFS(int S){
    queue<int>    Q;
    vis[S]=1;
    Q.push(S);
    int last=0;
    while(!Q.empty()){
        int V=Q.front();
        Q.pop();
        last=V;
        
        
        for(int i=0;i<G[V].size();i++){
            int to=G[V][i];
            if(vis[to]==0){
                pred[to]=V;
                vis[to]=1;
                Q.push(to);
            }
        }
    }

    for(int i=1;i<=n;i++){
        if(vis[i]==0)
            return -1;
    }
    return last;
}


void Opt(){
    //尝试从每个顶点出发, 
    int flag=-1;
    for(int i=1;i<=n;i++){
        init();
        flag=BFS(i);
        if(flag>0){
            break;
        }        
    }
    if(flag>0){
        int pos=flag;
        vector<int>    res;
        res.push_back(pos);
        while(1){
            pos=pred[pos];
            res.push_back(pos);
            if(pred[pos]==pos){
                break;
            }
        } 
        
        for(int i=res.size()-1;i>=0;i--){
            cout<<res[i]<<" ";
        }
    }
    else{
        cout<<"No Answer"<<endl;
    }
    
    
}


int main(int argc, char** argv) {
    Read();
    Opt();


    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值