傅里叶公式推导(一)


首先要了解的一点基础知识:

三角函数系

{ sin ⁡ 0 , cos ⁡ 0 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , … , sin ⁡ n x , cos ⁡ n x , …   } \left \{ \sin 0,\cos 0,\sin x,\cos x,\sin 2x, \cos 2x, \dots,\sin nx,\cos nx,\dots \right \} {sin0,cos0,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,}
一般常见的是下面这种
{ 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , … , sin ⁡ n x , cos ⁡ n x , …   } \left \{ 1, \sin x,\cos x,\sin 2x, \cos 2x, \dots,\sin nx,\cos nx,\dots \right \} {1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,}

正交

三角函数正交性,上面每个元素项和其他项(非自身)的乘积的积分为零
{ ∫ − π π sin ⁡ n x cos ⁡ m x d t = 0 , n ≠ m ∫ − π π sin ⁡ m x cos ⁡ n x d t = 0 , m ≠ n \left\{\begin{matrix} \int_{-\pi }^{\pi} \sin nx \cos mx \mathrm{d}t = 0, n \ne m \\ \int_{-\pi }^{\pi} \sin mx \cos nx \mathrm{d}t = 0, m \ne n \end{matrix}\right. {ππsinnxcosmxdt=0,n=mππsinmxcosnxdt=0,m=n

证明

图观法

直接画出两个乘积后的图像,如下( sin ⁡ x s i n 2 x \sin{x}sin{2x} sinxsin2x) 的曲线, 积分区间也就是图像围成的面积和,可以直接观察下图1面积为零。
在这里插入图片描述
图1
如下( sin ⁡ 2 x s i n 2 x \sin{2x}sin{2x} sin2xsin2x) 的曲线, 面积和不为零。
在这里插入图3
图2

数学证明法

首先下面一些基础式子要用到。
积化和差
sin ⁡ a sin ⁡ b = 1 2 [ cos ⁡ ( a − b ) − cos ⁡ ( a + b ) ] cos ⁡ a cos ⁡ b = 1 2 [ cos ⁡ ( a − b ) + cos ⁡ ( a + b ) ] \sin a \sin b = \frac{1}{2}\left [ \cos\left ( a - b \right ) - \cos \left ( a + b \right ) \right ] \\ \cos a \cos b = \frac{1}{2}\left [ \cos\left ( a - b \right ) + \cos \left ( a + b \right ) \right ] sinasinb=21[cos(ab)cos(a+b)]cosacosb=21[cos(ab)+cos(a+b)]

积分公式
∫ cos ⁡ θ d θ = sin ⁡ θ + C \int \cos \theta \mathrm{d} \theta = \sin \theta + \mathrm {C} cosθdθ=sinθ+C

基本式子

f ( x ) = ∫ cos ⁡ ( n − m ) x d x 令: θ = ( n − m ) x , x = θ n − m f ( x ) = ∫ cos ⁡ θ d θ 1 n − m = 1 n − m sin ⁡ θ + C 回代 θ = 1 n − m sin ⁡ ( n − m ) x + C \begin{array}{l} f(x) = \int \cos \left ( n-m \right ) x \mathrm {d} x \\ \text{令:} \theta = (n-m)x, x = \frac{\theta}{n-m} \\ f(x) = \int \cos \theta \mathrm{d}\theta\frac{1}{n-m} \\ = \frac{1}{n-m}\sin \theta + \mathrm {C} \\ \text {回代} \theta \\ = \frac{1}{n-m}\sin (n-m)x + \mathrm {C} \end{array} f(x)=cos(nm)xdx令:θ=(nm)x,x=nmθf(x)=cosθdθnm1=nm1sinθ+C回代θ=nm1sin(nm)x+C

计算

当 n不等于m

f ( x ) = ∫ − π π cos ⁡ n x cos ⁡ m x d x , 当 n ≠ m = 1 2 [ ∫ − π π cos ⁡ ( n − m ) x d x + ∫ − π π cos ⁡ ( n + m ) x d x ] = 1 2 [ 1 n − m sin ⁡ ( n − m ) x ∣ − π π + 1 n − m sin ⁡ ( n + m ) x ∣ − π π ] = 1 2 [ 0 + 0 ] = 0 \begin{array}{l} f(x) = \int_{-\pi}^{\pi} \cos{nx}\cos{mx} \mathrm{d}x , \text{当} n \ne m \\ = \frac{1}{2}[\int_{-\pi}^{\pi}\cos{(n-m)x}\mathrm{d}x + \int_{-\pi}^{\pi}\cos{(n+m)x}\mathrm{d}x] \\ = \frac{1}{2}[\frac{1}{n-m}\sin (n-m)x|_{-\pi}^{\pi} + \frac{1}{n-m}\sin (n+m)x|_{-\pi}^{\pi}] \\ = \frac{1}{2}[0 + 0] \\ = 0 \end{array} f(x)=ππcosnxcosmxdx,n=m=21[ππcos(nm)xdx+ππcos(n+m)xdx]=21[nm1sin(nm)xππ+nm1sin(n+m)xππ]=21[0+0]=0

当 n等于m(重点)

这个结果很重要,后面会用到。
f ( x ) = ∫ − π π cos ⁡ n x cos ⁡ m x d x , 当 n = m = 1 2 [ ∫ − π π cos ⁡ ( n − m ) x d x + ∫ − π π cos ⁡ ( n + m ) x d x ] 令 m = n = 1 2 [ ∫ − π π cos ⁡ ( n − n ) x d x + ∫ − π π cos ⁡ ( n + n ) x d x ] = 1 2 [ ∫ − π π 1 d x + ∫ − π π cos ⁡ 2 n x d x ] "+"后面cos积分是 sin 函数, 在 π 和 − π 的值为 0 = 1 2 [ 2 π + 0 ] = π \begin{array}{l} f(x) = \int_{-\pi}^{\pi} \cos{nx}\cos{mx} \mathrm{d}x , \text{当} n = m \\ = \frac{1}{2}[\int_{-\pi}^{\pi}\cos{(n-m)x}\mathrm{d}x + \int_{-\pi}^{\pi}\cos{(n+m)x}\mathrm{d}x] \\ \text{令} m = n \\ = \frac{1}{2}[\int_{-\pi}^{\pi}\cos{(n-n)x}\mathrm{d}x + \int_{-\pi}^{\pi}\cos{(n+n)x}\mathrm{d}x] \\ = \frac{1}{2}[\int_{-\pi}^{\pi}1\mathrm{d}x + \int_{-\pi}^{\pi}\cos{2nx}\mathrm{d}x] \\ \text{"+"后面cos积分是 sin 函数, 在} \pi 和 -\pi 的值为0 \\ = \frac{1}{2}[2\pi+0] \\ = \pi \end{array} f(x)=ππcosnxcosmxdx,n=m=21[ππcos(nm)xdx+ππcos(n+m)xdx]m=n=21[ππcos(nn)xdx+ππcos(n+n)xdx]=21[ππ1dx+ππcos2nxdx]"+"后面cos积分是 sin 函数, ππ的值为0=21[2π+0]=π

其它同理

更多视频参考:

https://www.bilibili.com/video/BV17t411d7hm/?spm_id_from=333.1391.0.0&vd_source=d45742076f53438671ec261bbacb2002

—————— 但行好事莫问前程,你若盛开蝴蝶自来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值