深度学习实战——利用Pytorch实现iris数据集的分类

# iris_multi-classfication.py
"""
Pytorch in action
Pytorch实现iris数据集的分类
"""

from tkinter import HIDDEN
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
from sklearn.datasets import load_iris
from torch.autograd import Variable
from torch.optim import SGD

# 动态的判断GPU是否可用,方便在不同类型的处理器上迁移
use_cuda = torch.cuda.is_available()
print("use_cuda:",use_cuda)

# 加载数据集
iris = load_iris()
print(iris.keys())

# 数据预处理,包括从数据集里区分输入输出,最后把输入输出数据封装成Pytorch期望的Variable格式
x = iris['data']        # 特征信息
y = iris['target']      # 目标分类
print(x.shape)          # (150,4)
print(y.shape)          # (150,)

print(y)
x = torch.FloatTensor(x)
y = torch.LongTensor(y)
x,y = Variable(x),Variable(y)

# Pytorch中自定义的模型都需要继承Module,并重写forward方法完成前向计算过程
class Net(torch.nn.Module):
    # 初始化函数,接受自定义输入特征维数,隐含层特征维数,输出层特征维数
    def __init__(self,n_feature,n_hidden,n_output):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(n_feature,n_hidden)  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值