大模型调优技术:Parameter-efficient transfer learning

1. 任务特定的适配器(Task-Specific Adapters)

基本概念:

适配器是一种轻量级模块,插入到预训练模型的各层之间。
适配器模块通常包括一个降维层、非线性激活函数和一个升维层。

工作原理:

插入适配器模块:在预训练模型的每一层之间插入适配器模块。
冻结原模型参数:在微调过程中,预训练模型的参数保持不变。
更新适配器参数:只更新适配器模块的参数,使模型能够适应特定的下游任务。

优点:

适配器模块通常很小,增加的参数量较少。
适配器模块可以灵活地插入到不同层次,适应不同的任务需求。

举例:

在一个预训练的 BERT 模型中,每个 Transformer 层之间插入适配器模块。在微调过程中,只更新这些适配器模块的参数,而 BERT 模型的参数保持不变。

2. 权重近似学习(Learning Weight Approximation)

基本概念:

  • 权重近似学习通过更新低秩矩阵来近似模型的权重。
  • 这种方法通常使用低秩分解技术,如矩阵分解,将原始权重矩阵分解为两个低秩矩阵的乘积。

工作原理:

  • 低秩分解:将预训练模型的权重矩阵分解为两个低秩矩阵的乘积。
  • 冻结原模型参数:在微调过程中,预训练模型的参数保持不变。
  • 更新低秩矩阵参数:只更新低秩矩阵的参数,使模型能够适应特定的下游任务。

优点:

  • 低秩矩阵的参数
### 最新研究论文:大模型 大模型(Fine-tuning Large Models)是当前人工智能领域的热门研究方向之一,尤其是在大规模语言模型(LLMs)和多模态模型(MM-LLMs)中。以下是一些与大模型相关的最新研究论文: 1. **LoRA (Low-Rank Adaptation of Large Language Models)** LoRA 是一种高效的微方法,通过在模型的权重矩阵上引入低秩分解来减少参数更新的数量。这种方法显著降低了计算成本和存储需求,同时保持了模型性能[^3]。 ```python # 示例代码:LoRA 的 PyTorch 实现片段 from peft import get_peft_model, LoraConfig, TaskType lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) model = get_peft_model(model, lora_config) ``` 2. **QLoRA: Efficient Finetuning of Quantized LLMs** QLoRA 是 LoRA 的扩展版本,结合了量化技术以进一步降低内存消耗。该方法允许在有限资源下对大规模模型进行高效微,同时保持较高的推理质量。 3. **P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-Tuning** P-Tuning v2 提出了一种基于提示的学习方法,通过化连续提示向量来替代传统的参数微。这种方法不仅减少了需要更新的参数数量,还提高了模型的泛化能力[^2]。 4. **Adapters for Parameter-Efficient Transfer Learning** Adapters 方法通过在预训练模型中插入小型模块(adapters)来实现参数高效的迁移学习。这些模块仅占原模型参数的一小部分,但能够显著提升特定任务上的性能[^1]。 5. **BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Models** BitFit 提出了一种简单而有效的微策略,仅整模型中的偏差项(bias terms),而非所有参数。这种方法在多个基准测试中表现出色,并且显著降低了计算开销[^3]。 6. **DreamBooth: Fine-Tuning Text-to-Image Diffusion Models with Subject-Specific Data** DreamBooth 是一种针对生成式扩散模型的微方法,专注于使用少量特定主题的数据来定制化生成图像。尽管主要应用于视觉领域,但其思想可以启发其他模态的大模型。 ### 相关工具与框架 为了方便研究人员和开发者进行大模型,以下是一些常用的开源工具和框架: - **Hugging Face Transformers**: 提供了丰富的预训练模型和微接口。 - **PEFT (Parameter-Efficient Fine-Tuning)**: 专为参数高效微设计的库,支持多种方法如 LoRA 和 Adapters。 - **DeepSpeed**: 来自微软的深度学习化框架,支持大规模模型的高效训练和微
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值