题目描述:
题目链接:添加链接描述
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
示例:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
思路:
这其实是求排列问题,因为不同顺序的序列被视为不同的组合。如果是不同顺序的序列被视为相同的组合,则为组合问题。
这其实的一个dp问题。
dp[i]代表数字之和为i的时候,有多少种方案。
状态转移:dp[i]+=dp[i-nums[j]],当数字总和为i并且放入第j个数字时的方案。
因为是求排列问题,所以外层循环为数字之和,内层循环为待取数列。
如果是求组合问题,则外层循环为待取数列,内层为数字之和。
int ans=0;
const int maxn=1000+50;
int take[maxn];
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
ans=0;
int n=nums.size();
sort(nums.begin(),nums.end());
memset(take,0,sizeof(take));
take[0]=1;
for(int i=1;i<=target;i++){
for(int j=0;j<n;j++){
if(i - nums[j] >= 0 && take[i] < INT_MAX - take[i - nums[j]])
{
take[i]+=take[i-nums[j]];
}
}
}
return take[target];
}
};