在本地显示远程服务器的TensorboardX结果

这篇博客记录了如何使用Xshell建立SSH隧道,从而在本地浏览器中查看远程服务器上运行的Tensorboard。通过设置隧道连接,将服务器的6007端口映射到本地端口,然后在服务器上运行`tensorboard --logdir=log_dir`命令,最后在本地浏览器访问http://localhost:6007即可查看Tensorboard结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在期末作业中想显示TensorboardX结果,搞了好久都没有成功,突然想到自己是想在本地显示服务器上的结果,之前的方向都是错的(在本地显示本地的结果)。

下面记录一下在本地显示服务器的tensorboardX结果的步骤

使用工具:Xshell
1、建立本地与服务器的隧道连接

建立ssh隧道,实现远程端口到本机端口的传递。远程服务器被监听的端口默认为6007端口,本机电脑任意一个非占用的端口都可以作为隧道建立的端口。

在XShell的目标服务器上右键选择 属性->ssh->隧道->添加,如下左图所示,在弹出的转移规则窗口中进行如下设置,并选择确定。其中源主机填127.0.0.1(表示本机),侦听端口可以任意设置一个未被占用的端口号,比如6007;目标主机表示本地服务器,目标端口为6007,即tensorboard设置的被监听的端口。

目标端口号,也可以用过在服务器端 运行tensorboard命令之后确定。
在这里插入图片描述
之后,选择连接。

在服务器输入命令,如果-port设置为其他端口,上面目标主机的目标端口也应该发生相应的修改。

tensorboard --logdir=log_dir

服务器端显示:
在这里插入图片描述

此时,复制链接到本地浏览器便可以成功访问tensorboard。

http://localhost:6007

浏览器端显示:
在这里插入图片描述

### 使用 TensorBoardX 而不安装 TensorBoard 的方法及注意事项 TensorBoardX 是一个独立于 TensorFlow 的工具,旨在支持其他框架(如 PyTorch)的用户通过 TensorBoard 进行日志记录和可视化[^1]。尽管其名称中包含 “TensorBoard”,但实际上它并不强制依赖完整的 TensorBoard 安装包。以下是关于如何在无需显式安装 TensorBoard 的情况下使用 TensorBoardX 的说明: #### 方法一:仅安装 TensorBoardX 并配置环境 为了能够运行 TensorBoard 可视化界面,仍然需要确保 `tensorboard` 命令可用。如果不想单独安装整个 TensorBoard 包,则可以通过以下方式实现: - **安装 TensorBoardX 和最小化的 TensorBoard 支持库** 在某些环境中,可以只安装必要的组件来满足 TensorBoardX 的需求。例如,在 Anaconda 环境下,可通过调整 PATH 或手动指定路径来调用已有的 TensorBoard 实现[^3]。 - **设置环境变量** 如果遇到类似错误提示:“tensorboard 不是内部或外部命令……”,则需确认系统 PATH 中包含了 TensorBoard 执行文件所在的目录。通常该位置位于 Anaconda 的 Scripts 文件夹内。 #### 方法二:利用远程服务托管 TensorBoard 数据 另一种替代方案是从本地移除对 TensorBoard GUI 的直接依赖,转而借助云平台或其他服务器上的实例完成数据展示工作。例如: - 将实验产生的事件文件上传至第三方存储空间; - 配合在线解析器访问这些预处理后的结果图表。 #### 编程实践示例 下面给出一段简单的代码片段演示如何初始化并写入标量数值到 TensorBoardX 日志当中去。 ```python from tensorboardX import SummaryWriter writer = SummaryWriter('./runs/experiment_1') for epoch in range(100): loss_value = (epoch / 100)**2 + ((epoch % 10)/50) writer.add_scalar('Loss/train', loss_value, epoch) writer.close() ``` 上述脚本创建了一个新的 summary writer 对象指向特定输出目录,并循环模拟若干次迭代期间损失函数的变化趋势。 #### 注意事项总结 当决定采用 TensorBoardX 解决方案时,请牢记以下几个要点: 1. 版本兼容性——所选用的不同软件模块之间应当相互匹配良好,比如 Python解释器版本号、PyTorch发行版以及对应的 TensorBoard/TensorBoardX 插件组合等等。 2. 正确指派 logdir 参数值给定清晰易懂的名字便于区分不同试验序列之间的差异之处[^2]. 3. CentOS低版本操作系统可能存在潜在风险因素影响正常部署流程因此推荐升级至较新稳定分支再尝试操作[^4].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值