大二记的笔记,现在拿出来和大家分享下
引言
确定性(必然)现象:一定发生(不发生)
随机(偶然)现象:可能发生、可能不发生
统计规律
1.1.1随机试验与随机事件
试验:观察、测量、实验
随机试验:
1. 在相同条件下可重复
2. 结果不止一个
3. 无法预测
事件:试验的每种结果
随机事件
基本事件:相对于实验目的来说不能再分(不必在分)
复合事件:由基本事件复合
必然事件:一定发生 Ω
不可能事件:一定不发生 Φ
1.1.2样本空间与事件的集合表示
样本空间:所有基本事件的集合 Ω
样本点:样本空间中的元素 ω
例:扔两个硬币,他的样本空间 Ω={(正,正)(正,反)(反,反)(反,正)}
例:
在[a,b]区间内扔一个质子 坐标 Ω=[a,b]
向平面扔一个质子 Ω={(x,y)|x,y∈R}
向空间扔一个质子 Ω={(x,y,z)|x,y,z∈R}
事件的集合表示:扔骰子点数小于3 C={1,2}
Ω——必然事件——样本空间
Φ——不可能事件——空集
事件——Ω的子集
1.1.3事件间的关系
(1)包含:A发生必然导致B发生 A⊂B{A\sub B}A⊂B
ϕ⊂A⊂Ω\phi\sub A \sub \Omegaϕ⊂A⊂Ω
(2)并(和)A与B中至少一个发生A⋃BA\bigcup BA⋃B
(3)交(积)A、B同时发生A⋂BA\bigcap BA⋂B
无限可列个:按某种规律排成一个序列
①自然数:0,1,2,3,…
②整数:0,1,-1,2,-2,…
③有理数:pq\frac{p}{q}qp:0,11\frac{1}{1}11,−11\frac{-1}{1}1−1,12\frac{1}{2}21,−12\frac{-1}{2}2−1,…
0.56565656...=x0.56565656...=x0.56565656...=x
56.56565656...=100x56.56565656...=100x56.56565656...=100x
56=100x−x=99x56=100x-x=99x56=100x−x=99x
x=5699x=\frac{56}{99}x=9956
0.12˙=0.1+0.02˙=110+290=11900.1\dot2=0.1+0.0\dot2=\frac{1}{10}+\frac{2}{90}=\frac{11}{90}0.12˙=0.1+0.02˙=101+902=9011
①实数②直线点集
(4)差A-B
(5)互不相容事件
A、B不同时发生 AB=ϕ\phiϕ
n个事件A1,A2,A3,...,AnA_1,A_2,A_3,...,A_nA1,A2,A3,...,An 若有AiAj=ϕA_iA_j=\phiAiAj=ϕ则这些事件两两互不相容
(6)对立事件:A、B互不相容,且A⋃B=ΩA\bigcup B=\OmegaA⋃B=Ω
A=BˉA=\bar BA=Bˉ B=AˉB=\bar AB=Aˉ
1)Aˉ\bar AAˉ是A的逆Aˉˉ=A\bar{\bar{A}}=AAˉˉ=A
2)A−B=A−AB=ABˉA-B=A-AB=A\bar BA−B=A−AB=ABˉ
互不相容事件和对立事件的联系与区别
1)两事件对立,则一定是互不相容的
2)互不相容适用于多个事件
对立只适用于两个事件
3)互不相容表示不能同时发生,也可以都不发生
对立是有且只有一个
(7)完备事件组
A1,A2,A3,...,AnA_1,A_2,A_3,...,A_nA1,A2,A3,...,An两两互不相容且⋃i=1nAi=Ω\bigcup_{i=1}^{n}A_i=\Omega⋃i=1nAi=Ω
运算律
1)交换律
A⋃B=B⋃AA\bigcup B=B\bigcup AA⋃B=B⋃A A⋂B=B⋂AA\bigcap B=B\bigcap AA⋂B=B⋂A
2)结合律
(A⋃B)⋃C=A⋃(B⋃C)(A\bigcup B)\bigcup C=A\bigcup(B\bigcup C)(A⋃B)⋃C=A⋃(B⋃C)
(A⋂B)⋂C=A⋂(B⋂C)(A\bigcap B)\bigcap C=A\bigcap(B\bigcap C)(A⋂B)⋂C=A⋂(B⋂C)
3)分配律
(A⋃B)⋂C=(A⋂C)⋃(B⋂C)(A\bigcup B)\bigcap C=(A\bigcap C)\bigcup(B\bigcap C)(A⋃B)⋂C=(A⋂C)⋃(B⋂C)
(A⋂B)⋃C=(A⋃C)⋂(B⋃C)(A\bigcap B)\bigcup C=(A\bigcup C)\bigcap(B\bigcup C)(A⋂B)⋃C=(A⋃C)⋂(B⋃C)
4)对偶律
A⋃B‾=A‾⋂B‾\overline{A \bigcup B}= \overline A \bigcap \overline BA⋃B=A⋂B
A⋂B‾=A‾⋃B‾\overline{A\bigcap B}= \overline A \bigcup \overline BA⋂B=A⋃B
A1⋃A2⋃...⋃An‾=A‾1⋂A‾2⋂...⋂A‾n\overline{A_1\bigcup A_2\bigcup ...\bigcup A_n}= \overline A_1 \bigcap \overline A_2 \bigcap ...\bigcap \overline A_nA1⋃A2⋃...⋃An=A1⋂A2⋂...⋂An
A1⋂A2⋂...⋂An‾=A‾1⋃A‾2⋃...⋃A‾n\overline{A_1\bigcap A_2\bigcap ...\bigcap A_n}= \overline A_1 \bigcup \overline A_2 \bigcup ...\bigcup \overline A_nA1⋂A2⋂...⋂An=A1⋃A2⋃...⋃An
例:射击打3枪Ai,i=1,2,3A_i,i=1,2,3Ai,i=1,2,3,第iii次击中
-
A1+A2A_1+A_2A1+A2:前两次至少击中一次
-
A‾2\overline A_2A2:第二次未击中
-
A1+A2+A3A_1+A_2+A_3A1+A2+A3:三次至少击中一次
-
A1A2A3A_1A_2A_3A1A2A3:三次全中
-
A2−A3=A2A‾3A_2-A_3=A_2\overline A_3A2−A3=A2A3:第二次中,第三次未中
-
A1+A3‾=A1‾⋂A3‾\overline {A_1+A_3}=\overline{A_1}\bigcap \overline{A_3}A1+A3=A1⋂A3:第一、三次未中
-
A1‾+A3‾\overline{A_1}+\overline{A_3}A1+A3:第一、三次至少一次未中
1.2.1概率的初等描述
概率:发生可能性的大小P(A)
性质:
- P(Ω\OmegaΩ)=1,P(ϕ\phiϕ)=0
- 0⩽P(A)⩽10\leqslant P(A)\leqslant 10⩽P(A)⩽1
1.2.2古典概率模型
条件:
-
有限个样本点
-
等可能性
P(A)=A的有利样本点Ω中样本点总数=A中包含的基本事件数基本事件总数\frac{A的有利样本点}{ \Omega中样本点总数}=\frac{A中包含的基本事件数}{基本事件总数}Ω中样本点总数A的有利样本点=基本事件总数A中包含的基本事件数
排列组合
加法原理
乘法原理
排列
- 不重复排列(从n个元素中取出m个排列)
Pnm=n(n−1)(n−1)...(n−m+1)=n!(n−m)!P_n^m=n(n-1)(n-1)...(n-m+1)=\frac{n!}{(n-m)!}Pnm=n(n−1)(n−1)...(n−m+1)=(n−m)!n!
全排列
Pnn=n!P_n^n=n!Pnn=n!
0!=1
①1!=1×0!
②P00=0!=1P_0^0=0!=1P00=0!=1 从0个里选0个,只有一种情况
③Pnn=n!(n−n)!=n!0!=n!P_n^n=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!Pnn=(n−n)!n!=0!n!=n!
- 重复排列(从n个不同的元素中去m个排列)
n×n×n×...×n=nmn\times n\times n\times ...\times n=n^mn×n×n×...×n=nm
组合:从n个不同的元素中取出m个不同的元素
Cnm=Pnmm!=n!m!(n−m)!C_n^m=\frac{P_n^m}{m!}=\frac{n!}{m!(n-m)!}Cnm=m!Pnm=m!(n−m)!n!
Cnm=Cnn−mC_n^m=C_n^{n-m}Cnm=Cnn−m Cn0=Cnn=1C_n^0=C_n^n=1Cn0=Cnn=1
例:一套五卷的选集,放书架上,求自左向右或自右向左是1,2,3,4,5的概率
2P55=160\frac{2}{P_5^5}=\frac{1}{60}P552=601
例:4个邮筒,2封信
-
前两个邮筒各投入一封信的概率
P224×4=18\frac{P_2^2}{4\times 4}=\frac{1}{8}4×4P22=81
-
第二个邮筒恰有一封信
C21C314×4=38\frac{C_2^1C_3^1}{4\times4}=\frac{3}{8}4×4C21C31=83
3.两封信投入不同邮筒
4×316\frac{4\times3}{16}164×3
1−4161-\frac{4}{16}1−164
例:5白球4黑球,任取三个球
-
2白1黑
C52C41C93\frac{C_5^2C_4^1}{C_9^3}C93C52C41
-
没黑球
C53C93\frac{C_5^3}{C_9^3}C93C53
-
颜色相同
C53+C43C93\frac{C_5^3+C_4^3}{C_9^3}C93C53+C43,1−C52C41C93−C51C42C931-\frac{C_5^2C_4^1}{C_9^3}-\frac{C_5^1C_4^2}{C_9^3}1−C93C52C41−C93C51C42
例:a个白,b个黑,任取一个为白球的概率
aa+b\frac{a}{a+b}a+ba
例:a个白,b个黑,接连取出m个球(1<=m<=a+b),第m次是白球的概率
法1:a(a+b−1)!(a+b)!=aa+b\frac{a(a+b-1)!}{(a+b)!}=\frac{a}{a+b}(a+b)!a(a+b−1)!=a+ba
法2:a×Pa+b−1m−1Pa+bm=aa+b\frac{a\times P_{a+b-1}^{m-1}}{P^{m}_{a+b}}=\frac{a}{a+b}Pa+bma×Pa+b−1m−1=a+ba
法3:aa+b\frac{a}{a+b}a+ba
古典性质:
- 非负性,0⩽P(A)⩽10\leqslant P(A)\leqslant 10⩽P(A)⩽1
- 规范性,P(Ω\OmegaΩ)=1,P(ϕ\phiϕ)=0
- 有限可加A1,A2,...,AnA_1,A_2,...,A_nA1,A2,...,An互不相容
P(A1+A2+...+An)=P(A1)+P(A2)+...+P(An)P(A_1+A_2+...+A_n)=P(A_1)+P(A_2)+...+P(A_n)P(A1+A2+...+An)=P(A1)+P(A2)+...+P(An)
缺点:必须是有限个结果,结果是等可能性
1.2.3几何概型
线段、平面、立体
例:会面问题
甲乙两人,6:00-7:00 先到者等一刻钟,甲乙两人在一小时内任一时刻都可到达
A——两人见面,x——甲到达时间,y——乙到达时间
蒲丰投针:
在平面上画有等距离为2a(a>0)的一些平行线,向平面上随机投一长2L(L<a)的针
解:
A——平行线与针相交
x——针的中心距离最近一条直线的距离,θ\thetaθ——针与平行线正方向的夹角
0≤x≤a0\leq x\leq a0≤x≤a ,$0 \leq \theta \leq \pi $
试验的样本空间Ω=[0,a]×[0,π]\Omega=[0,a]\times[0,\pi]Ω=[0,a]×[0,π]
A=x≤sinθ,0≤θ≤πA={x\leq sin\theta,0\leq \theta \leq \pi}A=x≤sinθ,0≤θ≤π
S(A)=∫0πlsinθdθ=2lS(A)=\int_0^\pi lsin\theta d\theta=2lS(A)=∫0πlsinθdθ=2l
P(A)=S(A)S(Ω)=2laπP(A)=\frac{S(A)}{S(\Omega)}=\frac{2l}{aπ}P(A)=S(Ω)S(A)=aπ2l
完全可加性:
两两互不相容
P(⋃i=1∞Ai)=∑i=1∞P(Ai)P(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i)P(⋃i=1∞Ai)=∑i=1∞P(Ai)
蒙特卡罗方法(统计模拟方法)
1.2.4频率与概率
做n次试验,A发生了m次,mn\frac{m}{n}nm就是频率
记作:ωn(A)\omega_n(A)ωn(A)
性质
- 非负性0≤ωn(A)≤10\leq \omega_n(A) \leq 10≤ωn(A)≤1
- 规范性ωn(Ω)=1,ωn(ϕ)=0\omega_n(\Omega)=1,\omega_n(\phi)=0ωn(Ω)=1,ωn(ϕ)=0
- 可加性,A1,A2,...,AmA_1,A_2,...,A_mA1,A2,...,Am互不相容
ωn(A1+...+Am)=ωn(A1)+...+ωn(Am)\omega_n(A_1+...+A_m)=\omega_n(A_1)+...+\omega_n(A_m)ωn(A1+...+Am)=ωn(A1)+...+ωn(Am)
1.2.5公理化
公理1(非负) 0≤P(A)≤10\leq P(A) \leq10≤P(A)≤1
公理2(规范) P(Ω)=1P(\Omega)=1P(Ω)=1
公理3(完全可加) A1,A2,...不相容A_1,A_2,...不相容A1,A2,...不相容
P(A1+A2+...)=P(A1)+P(A2)+...P(A_1+A_2+...)=P(A_1)+P(A_2)+...P(A1+A2+...)=P(A1)+P(A2)+...
性质一: P(ϕ)=0P(\phi)=0P(ϕ)=0
证:
Ω=Ω+ϕ+ϕ+...\Omega=\Omega+\phi+\phi+...Ω=Ω+ϕ+ϕ+...
P(Ω)=P(Ω+ϕ+ϕ+...)=P(Ω)+P(ϕ)+P(ϕ)+...P(\Omega)=P(\Omega+\phi+\phi+...)=P(\Omega)+P(\phi)+P(\phi)+...P(Ω)=P(Ω+ϕ+ϕ+...)=P(Ω)+P(ϕ)+P(ϕ)+...
P(ϕ)+P(ϕ)+...=0P(\phi)+P(\phi)+...=0P(ϕ)+P(ϕ)+...=0
又∵P(ϕ)≥0\because P(\phi) \geq 0∵P(ϕ)≥0
∴P(ϕ)=0\therefore P(\phi) = 0∴P(ϕ)=0
性质二:有限可加,A1,A2,...不相容A_1,A_2,...不相容A1,A2,...不相容
P(A1+A2+...An)=P(A1)+P(A2)+...+P(An)P(A_1+A_2+...A_n)=P(A_1)+P(A_2)+...+P(A_n)P(A1+A2+...An)=P(A1)+P(A2)+...+P(An)
证:
A1,...,An,ϕ,ϕ,...A_1,...,A_n,\phi,\phi,...A1,...,An,ϕ,ϕ,...不相容
P(A1+...An)=P(A1+...+An+ϕ+ϕ+...)=P(A1)+...+P(An)+P(ϕ)+P(ϕ)+...P(A_1+...A_n)=P(A_1+...+A_n+\phi+\phi+...)=P(A_1)+...+P(A_n)+P(\phi)+P(\phi)+...P(A1+...An)=P(A1+...+An+ϕ+ϕ+...)=P(A1)+...+P(An)+P(ϕ)+P(ϕ)+...
性质三:
P(Aˉ)=1−P(A)P(\bar A)=1-P(A)P(Aˉ)=1−P(A)
证:
A⋂Aˉ=ϕA\bigcap \bar A=\phiA⋂Aˉ=ϕ,A+Aˉ=ΩA+\bar A=\OmegaA+Aˉ=Ω
P(Ω)=P(A+Aˉ)=P(A)+P(Aˉ)=1P(\Omega)=P(A+\bar A)=P(A)+P(\bar A)=1P(Ω)=P(A+Aˉ)=P(A)+P(Aˉ)=1
推论:
A1,...,AnA_1,...,A_nA1,...,An完备事件组{两两不相容并是Ω,P(A1)+...+P(An)=1\begin{cases} 两两不相容\\并是\Omega, P(A_1)+...+P(A_n)=1 \end{cases}{两两不相容并是Ω,P(A1)+...+P(An)=1
P(Ω)=P(A1+...An)=P(A1)+...+P(An)=1P(\Omega)=P(A_1+...A_n)=P(A_1)+...+P(A_n)=1P(Ω)=P(A1+...An)=P(A1)+...+P(An)=1
性质四:
①P(A−B)=P(A)−P(AB)P(A-B)=P(A)-P(AB)P(A−B)=P(A)−P(AB)
②A⊃B,P(A−B)=P(A)−P(B)且P(A)≥P(B)A\supset B,P(A-B)=P(A)-P(B)且P(A)\geq P(B)A⊃B,P(A−B)=P(A)−P(B)且P(A)≥P(B)
证:
①A=(A−B)⋃ABA=(A-B)\bigcup ABA=(A−B)⋃AB,A−B与AB互不相容A-B与AB互不相容A−B与AB互不相容
$P(A)=P(A-B)+P(AB) $
$P(A-B)=P(A)-P(AB) $
②∵A⊃B\because A \supset B∵A⊃B
∴P(AB)=P(B)\therefore P(AB)=P(B)∴P(AB)=P(B)
∴P(A−B)=P(A)−P(B)\therefore P(A-B)=P(A)-P(B)∴P(A−B)=P(A)−P(B)
∵P(A−B)≥0,P(A−B)=P(A)−P(B)\because P(A-B)\geq 0,P(A-B)=P(A)-P(B)∵P(A−B)≥0,P(A−B)=P(A)−P(B)
∴P(A)≥P(B)\therefore P(A)\geq P(B)∴P(A)≥P(B)
性质五(加法)⋆⋆⋆⋆⋆\star \star \star \star \star⋆⋆⋆⋆⋆
P(A+B)=P(A)+P(B)−P(AB)P(A+B)=P(A)+P(B)-P(AB)P(A+B)=P(A)+P(B)−P(AB)
证:
A+B=A+(B−AB)A+B=A+(B-AB)A+B=A+(B−AB)
P(A+B)=P(A)+P(B−AB)=P(A)+P(B)−P(AB)P(A+B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB)P(A+B)=P(A)+P(B−AB)=P(A)+P(B)−P(AB)
P(B−AB)=P(B)−P(B⋂(AB))=P(B)−P(AB)P(B-AB)=P(B)-P(B\bigcap (AB))=P(B)-P(AB)P(B−AB)=P(B)−P(B⋂(AB))=P(B)−P(AB)
补:P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC)P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC)
例:A的概率0.4,B的概率0.3,A+B的概率0.6,求P(ABˉ)P(A \bar B)P(ABˉ)
P(A+B)=P(A)+P(B)−P(AB)P(A+B)=P(A)+P(B)-P(AB)P(A+B)=P(A)+P(B)−P(AB)
P(AB)=0.1P(AB)=0.1P(AB)=0.1
P(ABˉ)=P(A−B)=P(A)−P(AB)P(A\bar B)=P(A-B)=P(A)-P(AB)P(ABˉ)=P(A−B)=P(A)−P(AB)
P(ABˉ)=0.3P(A \bar B )=0.3P(ABˉ)=0.3
例:P(A)=P(B)=P(C)=14,P(AB)=0,P(AC)=P(BC)=116P(A)=P(B)=P(C)=\frac{1}{4},P(AB)=0,P(AC)=P(BC)=\frac{1}{16}P(A)=P(B)=P(C)=41,P(AB)=0,P(AC)=P(BC)=161,①A,B,C至少一个发生的概率②A,B,C都不发生概率
①
$P(A+B+C)=P(A)+P(B)+P©-P(AB)-P(AC)-P(BC)+P(ABC) $
=34−0−216+P(ABC)=\frac{3}{4}-0-\frac{2}{16}+P(ABC)=43−0−162+P(ABC)
$\because ABC\subset AB $
∴0≤P(ABC)≤P(AB)=0\therefore 0 \leq P(ABC)\leq P(AB)=0∴0≤P(ABC)≤P(AB)=0
∴P(AB)=0\therefore P(AB)=0∴P(AB)=0
P(A+B+C)=58P(A+B+C)=\frac{5}{8}P(A+B+C)=85
②
P(AˉBˉCˉ)=1−P(A+B+C)=38P(\bar A \bar B \bar C)=1-P(A+B+C)=\frac{3}{8}P(AˉBˉCˉ)=1−P(A+B+C)=83
不可能事件ϕ的概率P(ϕ)=0,但是他的逆命题不成立不可能事件\phi 的概率P(\phi)=0,但是他的逆命题不成立不可能事件ϕ的概率P(ϕ)=0,但是他的逆命题不成立
概率等于0的事件也可能发生,例:在[0,1]区间上投一个质子,质子落在某一个点上的概率等于0,但并不是不可能事件概率等于0的事件也可能发生,例:在[0,1]区间上投一个质子,质子落在某一个点上的概率等于0,但并不是不可能事件概率等于0的事件也可能发生,例:在[0,1]区间上投一个质子,质子落在某一个点上的概率等于0,但并不是不可能事件
例:有4个白球 3个黑球,取3个球,至少两个白球的概率
C42C31+C43C73\frac{C_4^2C_3^1+C_4^3}{C_7^3}C73C42C31+C43
例:2台机器,第一台不需要看的概率为0.9,第二台不需要看的概率为0.8,两台都需要看的概率为0.02,至少一台需要看的概率
P(A+B)=P(A)+P(B)−P(AB)=0.1+0.2−0.02=0.28P(A+B)=P(A)+P(B)-P(AB)=0.1+0.2-0.02=0.28P(A+B)=P(A)+P(B)−P(AB)=0.1+0.2−0.02=0.28
例:20件产品一等品6件,二等品10件,三等品4件,取3件,至少2件等级相同的概率
至少2件等级相同的逆事件:3件等级都不相同
1−C61C101C41C203=15191-\frac{C_6^1C_{10}^1C_4^1}{C_{20}^3}=\frac{15}{19}1−C203C61C101C41=1915
例:(生日问题)n个人至少两人生日相同的概率
n个人至少两人生日相同的概率的逆事件:n个人生日各不相同
1−365!365n1-\frac{365!}{365^n}1−365n365!
n=55时,至少两人生日相同的概率为0.99n=55时,至少两人生日相同的概率为0.99n=55时,至少两人生日相同的概率为0.99
1.3.1条件概率
有男生50人,女生50人;其中,有30名男生和10名女生可以吃到月饼,在吃到月饼的学生中男生占3040\frac{30}{40}4030
定义:Ω为样本空间,A、B两个事件P(B)>0,在B已经发生的条件下A发生的概率就是A对B的条件概率,记作P(A∣B)\Omega为样本空间,A、B两个事件P(B)>0,在B已经发生的条件下A发生的概率就是A对B的条件概率,记作P(A|B)Ω为样本空间,A、B两个事件P(B)>0,在B已经发生的条件下A发生的概率就是A对B的条件概率,记作P(A∣B)
P(A)以Ω为样本空间P(A)以\Omega为样本空间P(A)以Ω为样本空间
P(A∣B)以B为样本空间P(A|B)以B为样本空间P(A∣B)以B为样本空间
①P(A∣B)=nABnBP(A|B)=\frac{n_{AB}}{n_B}P(A∣B)=nBnAB
②P(A∣B)=nAB/nnB/n=P(AB)P(B)P(A|B)=\frac{n_{AB}/n}{n_B/n}=\frac{P(AB)}{P(B)}P(A∣B)=nB/nnAB/n=P(B)P(AB)
例:1~6 6个球 B:取的号码为偶数 A1A_1A1表示取的号码是1号 A2A_2A2表示取的号码是2号 A3表示取的号码大于4A_3表示取的号码大于4A3表示取的号码大于4
P(A1)=16P(A_1)=\frac{1}{6}P(A1)=61
P(A1∣B)=0P(A_1|B)=0P(A1∣B)=0
P(A2)=16P(A_2)=\frac{1}{6}P(A2)=61
P(A1∣B)=13P(A_1|B)=\frac{1}{3}P(A1∣B)=31
P(A3)=26P(A_3)=\frac{2}{6}P(A3)=62
P(A3∣B)=13P(A_3|B)=\frac{1}{3}P(A3∣B)=31
- P(A∣B)≥0P(A|B)\geq 0P(A∣B)≥0
- P(Ω∣B)=1P(\Omega|B)=1P(Ω∣B)=1
- A1,...,An,...不相容,P(∑i=1∞Ai∣B)=∑i=1∞P(Ai∣B)A_1,...,A_n,...不相容,P(\sum_{i=1}^\infty A_i|B)=\sum_{i=1}^\infty P(A_i|B)A1,...,An,...不相容,P(∑i=1∞Ai∣B)=∑i=1∞P(Ai∣B)
1.3.2乘法公式
P(A∣B)=P(AB)P(B),P(B∣A)=P(AB)P(A),P(A)>0,P(B)>0P(A|B)=\frac{P(AB)}{P(B)},P(B|A)=\frac{P(AB)}{P(A)},P(A)>0,P(B)>0P(A∣B)=P(B)P(AB),P(B∣A)=P(A)P(AB),P(A)>0,P(B)>0
①P(AB)=P(B)P(A∣B)P(AB)=P(B)P(A|B)P(AB)=P(B)P(A∣B)
②P(AB)=P(A)P(B∣A)P(AB)=P(A)P(B|A)P(AB)=P(A)P(B∣A)
P(A1,A2,...,An)=P(A1)P(A2∣A1)P(A3∣A1A2)…P(An∣A1...An−1)P(A_1,A_2,...,A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \dots P(A_n|A_1...A_{n-1})P(A1,A2,...,An)=P(A1)P(A2∣A1)P(A3∣A1A2)…P(An∣A1...An−1)
P(ABC)=P(A)P(B∣A)P(C∣AB)P(ABC)=P(A)P(B|A)P(C|AB)P(ABC)=P(A)P(B∣A)P(C∣AB)
例:共有产品100件,次品率10%,不放回取3次,第3次才取到合格品的概率
设A1,A2,A3A_1,A_2,A_3A1,A2,A3表示第1,2,3次取合格品
P(Aˉ1Aˉ2A3)=P(Aˉ1)P(Aˉ2∣Aˉ1)P(A3∣Aˉ1Aˉ2)=10100×999×9098=0.00835P(\bar A_1 \bar A_2A_3)=P(\bar A_1)P(\bar A_2|\bar A_1)P(A_3|\bar A_1 \bar A_2)=\frac{10}{100}\times \frac{9}{99} \times \frac{90}{98}=0.00835P(Aˉ1Aˉ2A3)=P(Aˉ1)P(Aˉ2∣Aˉ1)P(A3∣Aˉ1Aˉ2)=10010×999×9890=0.00835
例:灯泡甲占60%,乙占40%,甲的合格率90%,乙的合格率80%
1.是甲厂且合格的概率 2.是乙场且合格的概率
假设灯泡是甲厂的事件为A,是乙厂的事件为Aˉ\bar AAˉ,灯泡是合格的事件为B,灯泡不合格的事件为Bˉ\bar BBˉ
1.P(AB)=P(A)P(B∣A)=0.6∗0.9=0.54P(AB)=P(A)P(B|A)=0.6*0.9=0.54P(AB)=P(A)P(B∣A)=0.6∗0.9=0.54
2.P(AˉB)=P(Aˉ)P(B∣Aˉ)=0.4∗0.8=0.32P(\bar AB)=P(\bar A)P(B|\bar A)=0.4*0.8=0.32P(AˉB)=P(Aˉ)P(B∣Aˉ)=0.4∗0.8=0.32
例:10张签其中4张难签,甲乙丙3人抽签,求1)甲抽中难签的概率2)甲和乙抽到难签的概率3)甲抽到易签乙抽到难签的概率4)三人都抽到难签的概率
A,B,C分别表示甲乙丙抽到难签A,B,C分别表示甲乙丙抽到难签A,B,C分别表示甲乙丙抽到难签
1)P(A)=410P(A)=\frac{4}{10}P(A)=104
2)P(AB)=P(A)P(B∣A)=410×39=430P(AB)=P(A)P(B|A)=\frac{4}{10} \times \frac{3}{9}=\frac{4}{30}P(AB)=P(A)P(B∣A)=104×93=304
3)P(AˉB)=P(Aˉ)P(B∣Aˉ)=610×49=415P(\bar AB)=P(\bar A)P(B|\bar A)=\frac{6}{10}\times \frac{4}{9}=\frac{4}{15}P(AˉB)=P(Aˉ)P(B∣Aˉ)=106×94=154
4)P(ABC)=P(A)P(B∣A)P(C∣AB)=410×39×28=130P(ABC)=P(A)P(B|A)P(C|AB)=\frac{4}{10}\times \frac{3}{9}\times\frac{2}{8}=\frac{1}{30}P(ABC)=P(A)P(B∣A)P(C∣AB)=104×93×82=301
例:传染病模型——有a个红球,b个黑球,放入c个颜色相同的球,求连续三次都是红球的概率
设A1A2A3A_1A_2A_3A1A2A3表示第1,2,3次都摸到红球
P(A1A2A3)=aa+ba+ca+b+ca+2ca+b+2cP(A_1A_2A_3)=\frac{a}{a+b}\frac{a+c}{a+b+c}\frac{a+2c}{a+b+2c}P(A1A2A3)=a+baa+b+ca+ca+b+2ca+2c
c=0相当于摸完球就放回
c=-1相当于摸完球不放回
c>0每次放入c个颜色相同的球
1.4.1全概率公式
定理1.2:A1,A2,...,AnA_1,A_2,...,A_nA1,A2,...,An是试验E的完备事件组,P(Ai)>0P(A_i)>0P(Ai)>0,B是任意的事件,则有
P(B)=∑i=1nP(Ai)P(B∣Ai)P(B)=\sum_{i=1}^nP(A_i)P(B|A_i)P(B)=∑i=1nP(Ai)P(B∣Ai)
例:四条生产线
一号生产线 | 二号生产线 | 三号生产线 | 四号生产线 | |
---|---|---|---|---|
产量占比 | 15% | 20% | 30% | 35% |
不合格率 | 0.05 | 0.04 | 0.03 | 0.02 |
设A1,A2,A3,A4A_1,A_2,A_3,A_4A1,A2,A3,A4分别表示四条生产线生产的产品,B表示不合格
P(B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)+P(A3)P(B∣A3)+P(A4)P(B∣A4)P(B)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+P(A_3)P(B|A_3)+P(A_4)P(B|A_4)P(B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)+P(A3)P(B∣A3)+P(A4)P(B∣A4)
0.15∗0.05+0.2∗0.04+0.3∗0.03+0.35∗0.020.15*0.05+0.2*0.04+0.3*0.03+0.35*0.020.15∗0.05+0.2∗0.04+0.3∗0.03+0.35∗0.02
例:
10台收音机 有3台次品,7台正品,已售两台,问再取一台是正品的概率
假设B表示第三次是正品,A0A_0A0表示前两台都是次品,A1A_1A1表示前两台一台是次品一台是正品,A2A_2A2表示两台都是正品
P(B)=P(A0)P(B∣A0)+P(A1)P(B∣A1)+P(A2)P(B∣A2)P(B)=P(A_0)P(B|A_0)+P(A_1)P(B|A_1)+P(A_2)P(B|A_2)P(B)=P(A0)P(B∣A0)+P(A1)P(B∣A1)+P(A2)P(B∣A2)
=C32C102×78+C31C71C102×68+C72C102×58=\frac{C_3^2}{C_{10}^2}\times\frac{7}{8}+\frac{C_3^1C_7^1}{C_{10}^2}\times\frac{6}{8}+\frac{C_7^2}{C_{10}^2}\times\frac{5}{8}=C102C32×87+C102C31C71×86+C102C72×85
=0.7=0.7=0.7
例:
10件产品,
次品的出现次数 | 概率 |
---|---|
0次 | 13\frac{1}{3}31 |
1次 | 13\frac{1}{3}31 |
2次 | 13\frac{1}{3}31 |
检验有失误,正品被检测为次品的概率为0.02,次品被检验成正品的概率为0.05,问产品能通过验证的可能性
假设B是通过验证,A0,A1,A2A_0,A_1,A_2A0,A1,A2表示出现0次,1次,2次次品,B1B_1B1表示抽的是正品,Bˉ1\bar B_1Bˉ1表示抽的是次品
P(A0)=13,P(A1)=13,P(A2)=13P(A_0)=\frac{1}{3},P(A_1)=\frac{1}{3},P(A_2)=\frac{1}{3}P(A0)=31,P(A1)=31,P(A2)=31
P(B1∣A0)=1,P(B1∣A1)=910.P(B1∣A2)=810P(B_1|A_0)=1,P(B_1|A_1)=\frac{9}{10}.P(B_1|A_2)=\frac{8}{10}P(B1∣A0)=1,P(B1∣A1)=109.P(B1∣A2)=108
P(B1)=P(A0)P(B1∣A0)+P(A1)P(B1∣A1)+P(A2)P(B1∣A2)=0.9,P(Bˉ)=0.1P(B_1)=P(A_0)P(B_1|A_0)+P(A_1)P(B_1|A_1)+P(A_2)P(B_1|A_2)=0.9,P(\bar B)=0.1P(B1)=P(A0)P(B1∣A0)+P(A1)P(B1∣A1)+P(A2)P(B1∣A2)=0.9,P(Bˉ)=0.1
P(B)=P(B1)P(B∣B1)+P(Bˉ1)P(B∣Bˉ1)=0.9∗(1−0.02)+0.1∗0.05=0.887P(B)=P(B_1)P(B|B1)+P(\bar B_1)P(B|\bar B_1)=0.9*(1-0.02)+0.1*0.05=0.887P(B)=P(B1)P(B∣B1)+P(Bˉ1)P(B∣Bˉ1)=0.9∗(1−0.02)+0.1∗0.05=0.887
1.4.2贝叶斯公式
A1...AnA_1...A_nA1...An完备P(Ai)≥0,P(B)≥0P(A_i)\geq 0,P(B)\geq 0P(Ai)≥0,P(B)≥0
P(Ak∣B)=P(Ak)P(B∣Ak)∑i=1nP(Ai)P(B∣Ai)=P(AkB)P(B)P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum_{i=1}^{n}P(A_i)P(B|A_i)}=\frac{P(A_kB)}{P(B)}P(Ak∣B)=∑i=1nP(Ai)P(B∣Ai)P(Ak)P(B∣Ak)=P(B)P(AkB)
P(Ai)P(A_i)P(Ai)先验概率
P(Ai∣B)P(A_i|B)P(Ai∣B)后验概率
例:发病率0.0004,一个患者经过检验确诊有病99%,诊断为没病1%,一个健康的人经过检验有病0.1%,没病99.9%。现有一人经过检验发现有病,则此人真有病的概率为多少
A:患病 Aˉ\bar AAˉ:健康 B:检验有病
P(A)=0.0004P(A)=0.0004P(A)=0.0004
P(Aˉ)=0.9996P(\bar A)=0.9996P(Aˉ)=0.9996
P(B∣A)=0.99P(B|A)=0.99P(B∣A)=0.99
P(B∣Aˉ)=0.001P(B|\bar A)=0.001P(B∣Aˉ)=0.001
P(B)=P(A)P(B∣A)+P(Aˉ)P(B∣Aˉ)=0.0013956P(B)=P(A)P(B|A)+P(\bar A)P(B|\bar A)=0.0013956P(B)=P(A)P(B∣A)+P(Aˉ)P(B∣Aˉ)=0.0013956
P(A∣B)=P(AB)P(B)=P(A)P(B∣A)P(B)=0.0004×0.990.0013956=0.284P(A|B)=\frac{P(AB)}{P(B)}=\frac{P(A)P(B|A)}{P(B)}=\frac{0.0004\times0.99}{0.0013956}=0.284P(A∣B)=P(B)P(AB)=P(B)P(A)P(B∣A)=0.00139560.0004×0.99=0.284
1.5.1事件的独立性
定义:A事件的概率不受B发生与否的影响
P(A∣B)=P(A)P(A|B)=P(A)P(A∣B)=P(A)
定理:若P(A)>0,P(B)>0P(A)>0,P(B)>0P(A)>0,P(B)>0
A、B独立⇔P(AB)=P(A)P(B)A、B独立\Leftrightarrow P(AB)=P(A)P(B)A、B独立⇔P(AB)=P(A)P(B)
证: 充分P(AB)=P(A)P(B),P(A∣B)=P(AB)P(B)=P(A)P(B)P(B)=P(A)P(AB)=P(A)P(B),P(A|B)=\frac{P(AB)}{P(B)}=\frac{P(A)P(B)}{P(B)}=P(A)P(AB)=P(A)P(B),P(A∣B)=P(B)P(AB)=P(B)P(A)P(B)=P(A)
必要A、B独立,P(A∣B)=P(A)A、B独立,P(A|B)=P(A)A、B独立,P(A∣B)=P(A)
P(AB)=P(B)P(A∣B)=P(B)P(A)P(AB)=P(B)P(A|B)=P(B)P(A)P(AB)=P(B)P(A∣B)=P(B)P(A)
补:当P(A)=0或P(B)=0P(A)=0或P(B)=0P(A)=0或P(B)=0时,P(AB)=P(A)P(B)P(AB)=P(A)P(B)P(AB)=P(A)P(B)也成立
设P(A)=0,AB⊂A,0≤P(AB)≤P(A)=0P(A)=0, AB\subset A,0\leq P(AB) \leq P(A) = 0P(A)=0,AB⊂A,0≤P(AB)≤P(A)=0
P(AB)=P(A)P(B)P(AB)=P(A)P(B)P(AB)=P(A)P(B)
定义:若P(AB)=P(A)P(B),则A、B两个事件独立若P(AB)=P(A)P(B),则A、B两个事件独立若P(AB)=P(A)P(B),则A、B两个事件独立
ϕ、Ω与任意事件A独立\phi、\Omega 与任意事件A独立ϕ、Ω与任意事件A独立
定理:(1)如果A、B独立,则A与BˉA与\bar BA与Bˉ Aˉ与B\bar A 与 BAˉ与B $ \bar A 与 \bar B$独立
(2)P(A)=0或P(A)=1,A与任意事件独立
证:
(1)P(ABˉ)=P(A−B)=P(A−AB)=P(A)−P(A)P(B)=P(A)(1−P(B))=P(A)P(Bˉ)P(A \bar B)=P(A-B)=P(A-AB)=P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(\bar B)P(ABˉ)=P(A−B)=P(A−AB)=P(A)−P(A)P(B)=P(A)(1−P(B))=P(A)P(Bˉ)
(2)P(A)=0,AB⊂A,0≤P(AB)≤P(A)=0P(A)=0,AB\subset A,0\leq P(AB)\leq P(A)= 0P(A)=0,AB⊂A,0≤P(AB)≤P(A)=0
P(A)=1,P(Aˉ)=0,Aˉ与B独立,则A与B独立P(A)=1,P(\bar A)=0,\bar A与B独立,则A与B独立P(A)=1,P(Aˉ)=0,Aˉ与B独立,则A与B独立
独立:可能性
互不相容:AB=ϕAB=\phiAB=ϕ
P(A)>0,P(B)>0时,独立与互不相容不同时成立
三个事件独立
-
P(AB)=P(A)P(B)
-
P(BC)=P(B)P©
-
P(AC)=P(A)P©
-
P(ABC)=P(A)P(B)P©
例:P(A+B)=0.9,P(A)=0.4,求P(B)P(A+B)=0.9,P(A)=0.4,求P(B)P(A+B)=0.9,P(A)=0.4,求P(B)
-
A、B互不相容:AB=ϕ,P(AB)=0AB=\phi,P(AB)=0AB=ϕ,P(AB)=0
P(A+B)=P(A)+P(B)−P(AB)P(A+B)=P(A)+P(B)-P(AB)P(A+B)=P(A)+P(B)−P(AB)
P(B)=P(A+B)−P(A)=0.5P(B)=P(A+B)-P(A)=0.5P(B)=P(A+B)−P(A)=0.5
-
A、B独立:P(AB)=P(A)P(B)P(AB)=P(A)P(B)P(AB)=P(A)P(B)
P(A+B)=P(A)+P(B)−P(AB)=P(A)+P(B)−P(A)P(B)P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)P(A+B)=P(A)+P(B)−P(AB)=P(A)+P(B)−P(A)P(B)
P(B)=56P(B)=\frac{5}{6}P(B)=65
例:甲乙丙各投篮一次,投中概率分别为0.7,0.8,0.75
设甲投中为A、乙投中为B、丙投中为C
1)恰有一人投中的概率
P(ABˉCˉ+AˉBCˉ+AˉBˉC)P(A\bar B \bar C+\bar A B \bar C +\bar A \bar B C)P(ABˉCˉ+AˉBCˉ+AˉBˉC)
=P(ABˉCˉ)+P(AˉBCˉ)+P(AˉBˉC)=P(A\bar B \bar C)+P(\bar A B \bar C )+P(\bar A \bar B C)=P(ABˉCˉ)+P(AˉBCˉ)+P(AˉBˉC)
=P(A)P(Bˉ)P(Cˉ)+P(Aˉ)P(B)P(Cˉ)+P(Aˉ)P(Bˉ)P(C)=P(A)P(\bar B)P(\bar C)+P(\bar A)P(B)P(\bar C)+P(\bar A)P(\bar B)P(C)=P(A)P(Bˉ)P(Cˉ)+P(Aˉ)P(B)P(Cˉ)+P(Aˉ)P(Bˉ)P(C)
2)三人都投中
P(ABC)=P(A)P(B)P(C)P(ABC)=P(A)P(B)P(C)P(ABC)=P(A)P(B)P(C)
3)至少一人投中
逆命题→\rightarrow→三人都没投中
P(A+B+C)=1−P(AˉBˉCˉ)=1−P(Aˉ)P(Bˉ)P(Cˉ)P(A+B+C)=1-P(\bar A \bar B \bar C)=1-P(\bar A)P(\bar B)P(\bar C)P(A+B+C)=1−P(AˉBˉCˉ)=1−P(Aˉ)P(Bˉ)P(Cˉ)
例:破译密码,每个人破译密码的概率是0.6,若要以99%的概率破译出密码,则至少需要几人?
解:
Ai第i个人破译出来,B=⋃i=1nAˉiA_i第i个人破译出来,B=\bigcup _{i=1}^n \bar A_iAi第i个人破译出来,B=⋃i=1nAˉi
P(B)=1−P(⋂i=1nAˉi)=1−∏i=1nP(Aˉi)=1−0.4nP(B)=1-P(\bigcap _{i=1}^n \bar A_i)=1-\prod_{i=1}^n P(\bar A_i)=1-0.4^nP(B)=1−P(⋂i=1nAˉi)=1−∏i=1nP(Aˉi)=1−0.4n
1−0.4n≥0.991-0.4^n\geq0.991−0.4n≥0.99
n≈5.026n\approx 5.026n≈5.026
$\therefore n=6 $
例:0<P(A)<1,0<P(B)<1,P(A∣B)+P(Aˉ∣Bˉ)=10<P(A)<1,0<P(B)<1,P(A|B)+P(\bar A|\bar B)=10<P(A)<1,0<P(B)<1,P(A∣B)+P(Aˉ∣Bˉ)=1,证A、BA、BA、B独立
P(A∣Bˉ)+P(Aˉ∣Bˉ)=1P(A|\bar B)+P(\bar A|\bar B)=1P(A∣Bˉ)+P(Aˉ∣Bˉ)=1
在Bˉ发生的情况下,A发生的概率+Aˉ发生的概率=1在\bar B发生的情况下,A发生的概率+\bar A发生的概率=1在Bˉ发生的情况下,A发生的概率+Aˉ发生的概率=1
∴P(A∣B)=P(A∣Bˉ)\therefore P(A|B)=P(A|\bar B)∴P(A∣B)=P(A∣Bˉ)
P(AB)P(B)=P(ABˉ)P(Bˉ)=P(A−AB)1−P(B)=P(A)−P(AB)1−P(B)\frac{P(AB)}{P(B)}=\frac{P(A\bar B)}{P(\bar B)}=\frac{P(A-AB)}{1-P(B)}=\frac{P(A)-P(AB)}{1-P(B)}P(B)P(AB)=P(Bˉ)P(ABˉ)=1−P(B)P(A−AB)=1−P(B)P(A)−P(AB)
P(AB)−P(B)P(AB)=P(A)P(B)−P(B)P(AB)P(AB)-P(B)P(AB)=P(A)P(B)-P(B)P(AB)P(AB)−P(B)P(AB)=P(A)P(B)−P(B)P(AB)
P(AB)=P(A)P(B)P(AB)=P(A)P(B)P(AB)=P(A)P(B)
∴A、B独立\therefore A、B独立∴A、B独立
1.5.2伯努利模型
独立实验序列:E1,E2,...,EnE_1,E_2,...,E_nE1,E2,...,En独立,(做n次不同的实验)
n重独立实验:E,E,...,EE,E,...,EE,E,...,E独立,EnE^nEn(一个实验重复做n次)
伯努利实验:结果只有两种
n重伯努利:实验做n次,每次实验之间独立,结果只有两种
定理:A的概率P(0<P<1)P(0<P<1)P(0<P<1),Aˉ\bar AAˉ的概率(1−P)(1-P)(1−P)
n重伯努利中A发生k次的概率:
Pn(k)=CnkPk(1−P)n−k=CnkPkqn−k,q=1−pP_n(k)=C_n^kP^k(1-P)^{n-k}=C_n^kP^kq^{n-k},q=1-pPn(k)=CnkPk(1−P)n−k=CnkPkqn−k,q=1−p二次概率公式
例1:
一批产品,废品率0.1,合格率0.9,每次取一个又放回,取三次
(1)恰有一次取废品
C31×0.1×0.92C_3^1\times 0.1 \times 0.9^2C31×0.1×0.92
(2)恰有两次取废品
C32×0.12×0.9C_3^2\times 0.1^2\times0.9C32×0.12×0.9
(3)三次都取废品
C33×0.13C_3^3\times 0.1^3C33×0.13
(4)三次都取正品
C30×0.93C_3^0\times0.9^3C30×0.93
例2:
彩票每周开奖一次中奖率是十万分之一
十年买了520次,从未中奖的概率
P520(0)=C5200(1−10−5)520(10−5)0≈0.9948P_{520}(0)=C_{520}^0(1-10^{-5})^{520}(10^{-5})^0\thickapprox0.9948P520(0)=C5200(1−10−5)520(10−5)0≈0.9948