题目连接:http://poj.org/problem?id=1222
题意:一个矩阵上有灯,问怎么才能将矩阵上的所有的等都消掉
我们假设Xi表示第i个按钮按还是不按,那么对于一个灯可以得到这样的一个方程
p表示对第i个灯的影响 L表示第i个等的状态
例如 对于第1个灯 p1 p2 p7 等于1
之后对这30个方程进行高斯消元既可
看大佬代码写的版本:
//#include <bits/stdc++.h>
#include <cstdio>
#include <algorithm>
#define sf scanf
#define pf printf
using namespace std;
const int maxn = 50;
typedef int Matrix[maxn][maxn];
Matrix init,A;
bool check(int a,int b,int c,int d){
if(a == c && b == d) return 1;
else if(a == c && ((b == d + 1) || (b == d - 1)) ) return 1;
else if(b == d && ((a == c - 1) || (a == c + 1)) ) return 1;
else return 0;
}
void Init_Matrix(){
for(int i = 0;i < 30;++i)
for(int j = 0;j < 30;++j){
int ix = i / 6,iy = i % 6;
int cx = j / 6,cy = j % 6;
init[i][j] = check(ix,iy,cx,cy);
}
}
void Gauss(){
int i,j,k;
for(i = 0;i < 30;++i){
k = i;
for(j = i + 1;j < 30;++j)
if(init[j][i] > init[k][i]) k = j;
if(k != i) for(j = 0;j <= 30;++j) swap(init[i][j],init[k][j]);
for(j = 0;j < 30;++j)
if(i != j && init[j][i])
for(k = 0;k <= 30;++k)
init[j][k] = init[j][k] ^ init[i][k];
}
}
int main(){
int T,ca = 0;sf("%d",&T);
while(T--){
Init_Matrix();
for(int i = 0;i < 30;++i) sf("%d",&init[i][30]);
Gauss();
pf("PUZZLE #%d\n",++ca);
for(int i = 0;i < 5;++i)
for(int j = 0;j < 6;++j) pf("%d%c",init[i * 6 + j][30]," \n"[j == 5]);
}
}
自己写的代码:
//#include <bits/stdc++.h>
#include <cstdio>
#include <algorithm>
#define sf scanf
#define pf printf
using namespace std;
const int maxn = 50;
typedef int Matrix[maxn][maxn];
Matrix init;
bool check(int a,int b,int c,int d){
if(a == c && b == d) return 1;
else if(a == c && ((b == d + 1) || (b == d - 1)) ) return 1;
else if(b == d && ((a == c - 1) || (a == c + 1)) ) return 1;
else return 0;
}
//构造方程
void Init_Matrix(){
for(int i = 0;i < 30;++i)
for(int j = 0;j < 30;++j){
int ix = i / 6,iy = i % 6;
int cx = j / 6,cy = j % 6;
init[i][j] = check(ix,iy,cx,cy);
}
}
void Gauss(){
int i,j,k;
for(i = 0;i < 30;++i){
k = i;
//交换行
for(j = i + 1;j < 30;++j)
if(init[j][i] > init[k][i]) k = j;
if(k != i) for(j = 0;j <= 30;++j) swap(init[i][j],init[k][j]);
//消元
for(j = i + 1;j < 30;++j)
if(init[j][i])
for(k = i;k <= 30;++k)
init[j][k] = init[j][k] ^ init[i][k];
}
//回代
for(j = 29;j >= 0;--j){
int tmp = 0;
for(i = j + 1;i < 30;++i)
if(init[j][i]) tmp = tmp ^ (init[i][30]);
init[j][30] = init[j][30] ^ tmp;
}
}
int main(){
int T,ca = 0;sf("%d",&T);
while(T--){
Init_Matrix();
for(int i = 0;i < 30;++i) sf("%d",&init[i][30]);
Gauss();
pf("PUZZLE #%d\n",++ca);
for(int i = 0;i < 5;++i)
for(int j = 0;j < 6;++j) pf("%d%c",init[i * 6 + j][30]," \n"[j == 5]);
}
}