POJ 1222 EXTENDED LIGHTS OUT 高斯消元

本文提供了一种使用高斯消元法解决POJ 1222问题的方法,该问题涉及通过操作按钮来消除矩阵中的灯。文章详细介绍了如何构建和求解相关线性方程组的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目连接:http://poj.org/problem?id=1222
题意:一个矩阵上有灯,问怎么才能将矩阵上的所有的等都消掉

我们假设Xi表示第i个按钮按还是不按,那么对于一个灯可以得到这样的一个方程
这里写图片描述
p表示对第i个灯的影响 L表示第i个等的状态
例如 对于第1个灯 p1 p2 p7 等于1
之后对这30个方程进行高斯消元既可

看大佬代码写的版本:

//#include <bits/stdc++.h>
#include <cstdio>
#include <algorithm>
#define sf scanf
#define pf printf
using namespace std;
const int maxn = 50;
typedef int Matrix[maxn][maxn];

Matrix init,A;
bool check(int a,int b,int c,int d){
    if(a == c && b == d) return 1;
    else if(a == c && ((b == d + 1) || (b == d - 1)) ) return 1;
    else if(b == d && ((a == c - 1) || (a == c + 1)) ) return 1;
    else return 0;
}
void Init_Matrix(){
    for(int i = 0;i < 30;++i)
        for(int j = 0;j < 30;++j){
        int ix = i / 6,iy = i % 6;
        int cx = j / 6,cy = j % 6;
        init[i][j] = check(ix,iy,cx,cy);
    }
}
void Gauss(){
    int i,j,k;
    for(i = 0;i < 30;++i){
        k = i;
        for(j = i + 1;j < 30;++j)
            if(init[j][i] > init[k][i]) k = j;
        if(k != i) for(j = 0;j <= 30;++j) swap(init[i][j],init[k][j]);
        for(j = 0;j < 30;++j)
            if(i != j && init[j][i])
                for(k = 0;k <= 30;++k)
                    init[j][k] = init[j][k] ^ init[i][k];
    }
}
int main(){
    int T,ca = 0;sf("%d",&T);
    while(T--){
        Init_Matrix();
        for(int i = 0;i < 30;++i) sf("%d",&init[i][30]);
        Gauss();
        pf("PUZZLE #%d\n",++ca);
        for(int i = 0;i < 5;++i)
            for(int j = 0;j < 6;++j) pf("%d%c",init[i * 6 + j][30]," \n"[j == 5]);
    }
}

自己写的代码:

//#include <bits/stdc++.h>
#include <cstdio>
#include <algorithm>
#define sf scanf
#define pf printf
using namespace std;
const int maxn = 50;
typedef int Matrix[maxn][maxn];

Matrix init;
bool check(int a,int b,int c,int d){
    if(a == c && b == d) return 1;
    else if(a == c && ((b == d + 1) || (b == d - 1)) ) return 1;
    else if(b == d && ((a == c - 1) || (a == c + 1)) ) return 1;
    else return 0;
}
//构造方程
void Init_Matrix(){
    for(int i = 0;i < 30;++i)
        for(int j = 0;j < 30;++j){
        int ix = i / 6,iy = i % 6;
        int cx = j / 6,cy = j % 6;
        init[i][j] = check(ix,iy,cx,cy);
    }
}
void Gauss(){
    int i,j,k;
    for(i = 0;i < 30;++i){
        k = i;
        //交换行
        for(j = i + 1;j < 30;++j)
            if(init[j][i] > init[k][i]) k = j;
        if(k != i) for(j = 0;j <= 30;++j) swap(init[i][j],init[k][j]);
        //消元
        for(j = i + 1;j < 30;++j)
            if(init[j][i])
                for(k = i;k <= 30;++k)
                    init[j][k] = init[j][k] ^ init[i][k];
    }
    //回代
    for(j = 29;j >= 0;--j){
        int tmp = 0;
        for(i = j + 1;i < 30;++i)
            if(init[j][i]) tmp = tmp ^ (init[i][30]);
        init[j][30] = init[j][30] ^ tmp;
    }
}
int main(){
    int T,ca = 0;sf("%d",&T);
    while(T--){
        Init_Matrix();
        for(int i = 0;i < 30;++i) sf("%d",&init[i][30]);
        Gauss();
        pf("PUZZLE #%d\n",++ca);
        for(int i = 0;i < 5;++i)
            for(int j = 0;j < 6;++j) pf("%d%c",init[i * 6 + j][30]," \n"[j == 5]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值