一、keras是如何使用tensorboard的
tensorboard是一个非常强大的工具、不仅仅可以帮助我们可视化神经网络训练过程中的各种参数,而且可以帮助我们更好的调整网络模型、网络参数。
1.这是我环境里面的tensorflow和tensorboard版本。一开始用的2.0 的版本,没有跑通,又下载的1.14.0版本。pip install tensorflow==1.14.0 -i https://pypi.doubanio.com/simple,这个秒下载,比清华源的下载还快。
先导入tensorbord
from tensorflow.keras.callbacks import TensorBoard
在编译模型后加入两行代码实现可视化。
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
***在这里加入下面两行代码:***
Tensorboard = TensorBoard(log_dir="logs", histogram_freq=1)
history = model.fit(X_train, Y_train, epochs=10, batch_size=10, verbose=2, validation_split=0.33,
callbacks=[Tensorboard])
*validation_split=0.33是在训练集中抽取33%作为验证集*
Tensorboard它的参数列表如下:
log_dir: 用来保存被 TensorBoard 分析的日志文件的文件名。
histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率(训练轮数中)。 如果设置成 0 ,直方图不会被计算。对于直方图可视化的验证数据(或分离数据)一定要明确的指出。
write_graph: 是否在 TensorBoard 中可视化图像。 如果 write_graph 被设置为 True。
write_grads: 是否在 TensorBoard 中可视化梯度值直方图。 histogram_freq 必须要大于 0 。
batch_size: 用以直方图计算的传入神经元网络输入批的大小。
write_images: 是否在 TensorBoard 中将模型权重以图片可视化,如果设置为True,日志文件会变得非常大。
embeddings_freq: 被选中的嵌入层会被保存的频率(在训练轮中)。
update_freq: ‘batch’ 或 ‘epoch’ 或 整数。当使用 ‘batch’ 时,在每个 batch 之后将损失和评估值写入到 TensorBoard 中。同样的情况应用到 ‘epoch’ 中。如果使用整数,例如 10000,这个回调会在每 10000 个样本之后将损失和评估值写入到 TensorBoard 中。注意,频繁地写入到 TensorBoard 会减缓你的训练。
二. 启动tensorboard
训练结束后会在项目里产生一个logs文件。
打开cmd(启动anaconda Prompt)输入logs地址:tensorboard --logdir=Desktop\Project\mypython\logs
我的logs文件地址:
运行得到
复制:http://DESKTOP-A1BGRFO:6006
在浏览器里打开(我用的谷歌浏览器)
1.scalers面板中默认给出的是训练数据的loss和accuracy、以及验证集上的loss和accuracy(如果有验证集的话,没有则没有)
2.graphs面板可以看你的模型
3.histogram_freq参数
该参数用于设置tensorboard面板中的histograms和distributions面板,默认是0,即不显示,设置为大于01的数,本例设置为1,则显示这两个面板
设置了histogram_freq参数之后,则会显示histograms和distributions面板这两个面板,需要注意的是:
keras中没一个卷积层、全连接层都会默认有权值矩阵,称之为kernel,默认有偏置项bias,所以在这两个面板中会有kernel和bias这两个图形。
详细代码
此代码用于自己的数据集导入,可用于自己的项目可视化,网络模型编的简单,可自行编写网络模型或者用迁移学习,博主之后的博客会写迁移学习的可视化过程,有兴趣着可关注。
# -*- coding: utf-8 -*-
import os
import numpy as np
from keras.layers import MaxPooling2D
from keras import Sequential
from keras.layers import Conv2D
import tensorflow as tf
from keras.layers import Flatten
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.preprocessing import image
from keras.layers import GlobalMaxPooling2D, Flatten, Dense, Dropout, GlobalAveragePooling2D
import random
def DataSet():
train_path_nonoise = 'C:/Users/HASee/Desktop/noise1/train1/nonoise/'
train_path_yesnoise = 'C:/Users/HASee/Desktop/noise1/train1/yesnoise/'
imglist_train_nonoise = os.listdir(train_path_nonoise)
imglist_train_yesnoise = os.listdir(train_path_yesnoise)
X_train = np.empty((len(imglist_train_nonoise) + len(imglist_train_yesnoise), 224, 224, 3))
Y_train = np.empty((len(imglist_train_nonoise) + len(imglist_train_yesnoise), 2))
count = 0
for img_name in imglist_train_nonoise:
img_path = train_path_nonoise + img_name
img = image.load_img(img_path, target_size=(224, 224))
img = image.img_to_array(img) / 255.0
X_train[count] = img
Y_train[count] = np.array((1, 0))
count += 1
for img_name in imglist_train_yesnoise:
img_path = train_path_yesnoise + img_name
img = image.load_img(img_path, target_size=(224, 224))
img = image.img_to_array(img) / 255.0
X_train[count] = img
Y_train[count] = np.array((0, 1))
count += 1
index = [i for i in range(len(X_train))]
random.shuffle(index)
X_train = X_train[index]
Y_train = Y_train[index]
return X_train, Y_train
X_train, Y_train = DataSet()
print('X_train shape : ', X_train.shape)
print('Y_train shape : ', Y_train.shape)
# # model
model = Sequential()
model.add(Conv2D(12, kernel_size=(3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(24, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(48, kernel_size=(5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, kernel_size=(5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(200, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
Tensorboard = TensorBoard(log_dir="logs", histogram_freq=1)
history = model.fit(X_train, Y_train, epochs=20, batch_size=10, verbose=2, validation_split=0.33,
callbacks=[Tensorboard])