subplot(mnp)三种线性插值对比

subplot(231)  #把画布分成2*3的格子,把Y1放在第一格
plot(t,y1)
subplot(232)#把画布分成2*3的格子,把Y2放在第2格
plot(t,y2)
subplot(233)#把画布分成2*3的格子,把Y3放在第3格
plot(t,y3)
subplot
### 如何在 MATLAB 中进行三维非线性样条插值 对于三维空间内的非线性样条插值,在 MATLAB 中可以通过 `griddedInterpolant` 或者组合使用多个维度上的 `interp1` 来完成。然而,针对更复杂的曲面或体积内点的插值需求,则通常采用专门设计来处理多维数据集的功能函数如 `scatteredInterpolant`。 当涉及到具体实现时,下面给出了一段基于散乱数据点构建三维样条插值模型的例子: ```matlab % 定义一些随机分布的数据点作为已知样本 n = 80; x = rand(n,1)*4-2; % X坐标范围[-2,2] y = rand(n,1)*4-2; % Y坐标范围[-2,2] z = peaks(x,y); % 使用peaks函数生成Z轴数值模拟实际测量值 % 创建一个较细密网格用于展示最终插值得到的结果表面 [xi,yi] = meshgrid(linspace(-2,2,100), linspace(-2,2,100)); % 构造并配置scatteredInterpolant对象来进行三维样条插值 F = scatteredInterpolant(x(:), y(:), z(:),'natural'); % 应用此插值器获得新位置处对应的估计高度zi zi = F(xi, yi); % 可视化原始采样点以及通过插值得来的近似地形图 figure; subplot(1,2,1); plot3(x, y, z,'.'); title('Original Sample Points'); xlabel('X axis'), ylabel('Y axis'), zlabel('Value Z'); subplot(1,2,2); surf(xi, yi, zi); shading interp; colorbar; title('Spline Interpolation Result on a Fine Grid'); xlabel('X axis'), ylabel('Y axis'), zlabel('Estimated Value Z'); ``` 这段程序首先制造了一些位于特定区域内的离散观测点及其关联的高度信息;接着利用这些有限数量的信息源建立了能够预测任意给定坐标的高程值的数学映射关系——即所谓的“插值”。最后部分则展示了如何将这种抽象的概念转换成易于理解的形式,比如图像化的表达方式[^2]。 值得注意的是,这里选择了 `'natural'` 参数指定自然边界条件下的三次样条插值方案,这有助于保持边缘附近的变化趋势更加合理和平滑[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值