PyTorch | torch.zeros()如何使用?torch.zeros使用方法 | torch.zeros()例子

公众号【计算机视觉联盟】后台回复【PyTorch】可以获得独家PyTorch学习教程pdf版

还是用实际例子比较明显

    out_t = torch.tensor(([1]))

    t = torch.zeros((3,3), out=out_t)

    print("t的值:\n",t,"\n out_t的值\n",out_t)
    print("看一下t和out_t的id位置号\n",id(t),"\n",id(out_t))

 输出结果:

t的值:
 tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]]) 
 out_t的值
 tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])
看一下t和out_t的id位置号
 1819528746952 
 1819528746952

Process finished with exit code 0

PyTorch | torch.from_numpy使用方法

PyTorch | torch.randperm()使用方法

PyTorch | torch.tensor使用方法

<think>我们参考用户提供的引用[1]来回答torch.zeros函数的原型定义及参数说明。 引用[1]中明确给出了torch.zeros函数的原型: torch.zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor 我们将详细解释每个参数: 1. *size (可变参数): 定义输出张量的维度。可以是一个整数序列(如(2,3))或者是多个整数参数(如2,3)。例如: torch.zeros(2, 3) 或者 torch.zeros((2,3)) 都会创建一个2行3列的全零张量。 2. out (Tensor, 可选): 输出张量。如果提供,则函数结果将被写入这个张量中,并且函数返回的也是这个张量。 3. dtype (torch.dtype, 可选): 返回张量的数据类型。如果为None,则使用默认值(通常为torch.float32)。 4. layout (torch.layout, 可选): 返回张量的内存布局。默认是torch.strided(密集张量)。 5. device (torch.device, 可选): 返回张量所在的设备,例如'cpu'或'cuda'。如果为None,则使用当前设备(对于CPU张量是CPU,对于GPU张量是当前GPU)。 6. requires_grad (bool, 可选): 如果设置为True,则自动记录对该张量的操作,用于反向播。默认False。 注意:在较新的PyTorch版本中,通常推荐使用关键字参数来指定dtype、device等参数,以避免混淆。 下面我们用一个示例来展示如何使用: 示例代码: import torch # 创建一个3行2列的全零张量,数据类型为float,设备在CPU上,不需要梯度 x = torch.zeros(3, 2, dtype=torch.float, device='cpu', requires_grad=False) print(x) 输出: tensor([[0., 0.], [0., 0.], [0., 0.]]) 另外,我们还可以使用torch.zeros_like函数来创建一个与给定张量形状和类型相同的全零张量,其原型为: torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor 这个函数会忽略input的具体值,只使用其形状和属性(除非通过参数覆盖)。 例如: input = torch.randn(2, 3) zeros_like_input = torch.zeros_like(input) 这样zeros_like_input就是一个和input形状相同(2行3列)的全零张量,并且数据类型、设备等属性与input一致。 根据引用[1]的内容,我们完成了对torch.zeros函数原型的解释。 注意:在引用中,我们只参考了引用[1]的内容,因为其他引用([2]到[5])是关于其他函数的(如torch.rand, torch.rand_like, torch.tensor等)或激活函数的,与torch.zeros无关。 因此,我们在回答末尾添加引用标识[^1]。</think>### `torch.zeros`函数原型与参数详解 #### 📜 函数原型定义 ```python torch.zeros( *size, # 张量形状(可变参数) out=None, # 输出张量(可选) dtype=None, # 数据类型(可选) layout=torch.strided, # 内存布局(可选) device=None, # 设备位置(可选) requires_grad=False # 梯度计算标志(可选) ) -> Tensor ``` #### 🔍 参数说明 1. **`*size`**(必需) - 定义张量维度的**可变长度参数** - 可接受两种形式: ```python torch.zeros(2, 3) # 直接递维度值 torch.zeros((2, 3)) # 递维度元组 ``` - 示例:`size=(3, 4)` 创建3行4列的矩阵 2. **`out`**(可选,默认`None`) - 指定输出张量对象 - 当提供时,结果将直接写入该张量 - 示例: ```python result = torch.empty(2,2) torch.zeros(2, 2, out=result) # 结果存入result ``` 3. **`dtype`**(可选,默认`None`) - 指定张量数据类型,未设置时继承默认类型(通常为`torch.float32`) - 支持类型: ```python torch.float32, torch.int64, torch.bool # 等 ``` - 示例:`dtype=torch.int16` 创建16位整型零张量 4. **`layout`**(可选,默认`torch.strided`) - 内存布局格式,通常保持默认值 - 可选值:`torch.strided`(密集存储), `torch.sparse_coo`(稀疏存储) 5. **`device`**(可选,默认`None`) - 指定张量存储设备 - 自动继承当前激活设备(CPU/GPU) - 示例: ```python device='cuda:0' # 存储在GPU 0 device=torch.device('mps') # Apple Silicon GPU ``` 6. **`requires_grad`**(可选,默认`False`) - 启用自动微分跟踪 - 设为`True`时参与梯度计算 - 示例:`requires_grad=True` 用于可训练参数初始化 #### 💻 基础用法示例 ```python import torch # 创建3×2全零张量(默认float32) a = torch.zeros(3, 2) print(a) ``` 输出: ``` tensor([[0., 0.], [0., 0.], [0., 0.]]) ``` #### ⚙️ 高级用法示例 ```python # 创建GPU上的整型零张量 b = torch.zeros( 2, 4, dtype=torch.int32, device='cuda' ) # 创建支持梯度计算的零张量 c = torch.zeros(5, requires_grad=True) ``` #### ⚠️ 关键注意事项 1. **形状参数灵活性**:`size` 可接受元组或独立参数 2. **设备继承规则**:未指定`device`时使用当前激活设备 3. **数据类型默认**:未指定`dtype`时使用`torch.get_default_dtype()`值 4. **内存优化**:全零张量采用高效存储,实际内存占用极低[^1] --- ### 相关便捷函数 | 函数 | 描述 | 示例 | |------|------|------| | `torch.zeros_like(input)` | 创建与`input`同形的零张量 | `zeros_like(torch.rand(2,3))` | | `torch.ones()` | 创建全1张量 | `ones(3, dtype=torch.bool)` | | `torch.empty()` | 创建未初始化张量 | `empty(2,2).zero_()` | ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值