<think>我们参考用户提供的引用[1]来回答torch.zeros函数的原型定义及参数说明。
引用[1]中明确给出了torch.zeros函数的原型:
torch.zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
我们将详细解释每个参数:
1. *size (可变参数): 定义输出张量的维度。可以是一个整数序列(如(2,3))或者是多个整数参数(如2,3)。例如:
torch.zeros(2, 3) 或者 torch.zeros((2,3)) 都会创建一个2行3列的全零张量。
2. out (Tensor, 可选): 输出张量。如果提供,则函数结果将被写入这个张量中,并且函数返回的也是这个张量。
3. dtype (torch.dtype, 可选): 返回张量的数据类型。如果为None,则使用默认值(通常为torch.float32)。
4. layout (torch.layout, 可选): 返回张量的内存布局。默认是torch.strided(密集张量)。
5. device (torch.device, 可选): 返回张量所在的设备,例如'cpu'或'cuda'。如果为None,则使用当前设备(对于CPU张量是CPU,对于GPU张量是当前GPU)。
6. requires_grad (bool, 可选): 如果设置为True,则自动记录对该张量的操作,用于反向传播。默认False。
注意:在较新的PyTorch版本中,通常推荐使用关键字参数来指定dtype、device等参数,以避免混淆。
下面我们用一个示例来展示如何使用:
示例代码:
import torch
# 创建一个3行2列的全零张量,数据类型为float,设备在CPU上,不需要梯度
x = torch.zeros(3, 2, dtype=torch.float, device='cpu', requires_grad=False)
print(x)
输出:
tensor([[0., 0.],
[0., 0.],
[0., 0.]])
另外,我们还可以使用torch.zeros_like函数来创建一个与给定张量形状和类型相同的全零张量,其原型为:
torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor
这个函数会忽略input的具体值,只使用其形状和属性(除非通过参数覆盖)。
例如:
input = torch.randn(2, 3)
zeros_like_input = torch.zeros_like(input)
这样zeros_like_input就是一个和input形状相同(2行3列)的全零张量,并且数据类型、设备等属性与input一致。
根据引用[1]的内容,我们完成了对torch.zeros函数原型的解释。
注意:在引用中,我们只参考了引用[1]的内容,因为其他引用([2]到[5])是关于其他函数的(如torch.rand, torch.rand_like, torch.tensor等)或激活函数的,与torch.zeros无关。
因此,我们在回答末尾添加引用标识[^1]。</think>### `torch.zeros`函数原型与参数详解
#### 📜 函数原型定义
```python
torch.zeros(
*size, # 张量形状(可变参数)
out=None, # 输出张量(可选)
dtype=None, # 数据类型(可选)
layout=torch.strided, # 内存布局(可选)
device=None, # 设备位置(可选)
requires_grad=False # 梯度计算标志(可选)
) -> Tensor
```
#### 🔍 参数说明
1. **`*size`**(必需)
- 定义张量维度的**可变长度参数**
- 可接受两种形式:
```python
torch.zeros(2, 3) # 直接传递维度值
torch.zeros((2, 3)) # 传递维度元组
```
- 示例:`size=(3, 4)` 创建3行4列的矩阵
2. **`out`**(可选,默认`None`)
- 指定输出张量对象
- 当提供时,结果将直接写入该张量
- 示例:
```python
result = torch.empty(2,2)
torch.zeros(2, 2, out=result) # 结果存入result
```
3. **`dtype`**(可选,默认`None`)
- 指定张量数据类型,未设置时继承默认类型(通常为`torch.float32`)
- 支持类型:
```python
torch.float32, torch.int64, torch.bool # 等
```
- 示例:`dtype=torch.int16` 创建16位整型零张量
4. **`layout`**(可选,默认`torch.strided`)
- 内存布局格式,通常保持默认值
- 可选值:`torch.strided`(密集存储), `torch.sparse_coo`(稀疏存储)
5. **`device`**(可选,默认`None`)
- 指定张量存储设备
- 自动继承当前激活设备(CPU/GPU)
- 示例:
```python
device='cuda:0' # 存储在GPU 0
device=torch.device('mps') # Apple Silicon GPU
```
6. **`requires_grad`**(可选,默认`False`)
- 启用自动微分跟踪
- 设为`True`时参与梯度计算
- 示例:`requires_grad=True` 用于可训练参数初始化
#### 💻 基础用法示例
```python
import torch
# 创建3×2全零张量(默认float32)
a = torch.zeros(3, 2)
print(a)
```
输出:
```
tensor([[0., 0.],
[0., 0.],
[0., 0.]])
```
#### ⚙️ 高级用法示例
```python
# 创建GPU上的整型零张量
b = torch.zeros(
2, 4,
dtype=torch.int32,
device='cuda'
)
# 创建支持梯度计算的零张量
c = torch.zeros(5, requires_grad=True)
```
#### ⚠️ 关键注意事项
1. **形状参数灵活性**:`size` 可接受元组或独立参数
2. **设备继承规则**:未指定`device`时使用当前激活设备
3. **数据类型默认**:未指定`dtype`时使用`torch.get_default_dtype()`值
4. **内存优化**:全零张量采用高效存储,实际内存占用极低[^1]
---
### 相关便捷函数
| 函数 | 描述 | 示例 |
|------|------|------|
| `torch.zeros_like(input)` | 创建与`input`同形的零张量 | `zeros_like(torch.rand(2,3))` |
| `torch.ones()` | 创建全1张量 | `ones(3, dtype=torch.bool)` |
| `torch.empty()` | 创建未初始化张量 | `empty(2,2).zero_()` |
---